
Department of Computer Science
Lund Institute of Technology

Lund University
P.O. Box 118, S-221 00 Lund

Sweden

Fine-Grained Revision Control for
Collaborative Software Development

Boris Magnusson
Ulf Asklund
Sten Minör

LU-CS-TR:93-112

Also published in: Proceedings of ACM SIGSOFT’93 - Symposium on the
Foundations of Software Engineering, Los Angeles, California 7-10 December

1993

- 1 -

Fine-Grained Revision Control for
Collaborative Software Development

Boris Magnusson
Ulf Asklund
Sten Minör

Department of Computer Science, Lund University
P.O.Box 118, S-221 00 Lund, Sweden

Email: {Boris.Magnusson,Sten.Minor,Ulf.Asklund}@dna.lth.se

ABSTRACT

This paper presents a framework for controlling the evolution of
complex software systems concurrently developed by teams of
software engineers. A general technique for fine-grained revision
control of hierarchically structured information, such as programs
and documents, is described and evaluated. All levels in the
hierarchy are revision controlled, leaves as well as branch nodes.
The technique supports sharing of unchanged nodes among
revisions, automatic change propagation, and change-oriented
representation of differences. Its use in a software development
environment is presented, facilitating optimistic check-out of
revisions and alternatives, check-in with incremental merge
support, visualization of change propagation, and an integrated
flexible diff-ing technique providing group awareness for team
members.

KEYWORDS

Software development, version and configuration control,
incremental merge, teamware, CSCW, group awareness

1 INTRODUCTION

Despite the fact that software systems are developed, documented
and maintained by teams, most development environments give
poor support for people working together. The availability of
world-wide networks adds a dimension of geographical
distribution to the picture and makes the problem even more
urgent. Networks are not only used for distribution of notes and
news, but are often used as an essential component in the
infrastructure. It is for example very common for co-authors of
papers to depend on a working e-mail connection. When people
work together in existing environments, different patterns of
coordination develop. One isturn-taking, where one person at the
time does his changes. Another issplit-combine where the shared
document is partitioned and each person does changes in his part.
When all are done the updated pieces are combined again. Yet
another method iscopy-merge where each person is given a full
copy of the document, does his changes, and in the end all changes

are merged together. Although these cooperation methods might
serve in restricted situations where few persons are involved,
during a short time period and developing single documents, there
are some severe drawbacks with each strategy:

• Turn-taking means that only one person can work at the
same time.

• Split-Combine means that the partitioning has to be fixed
over some period of time.

• Copy-Merge gives a merging situation that can develop
into a nightmare in case there is no strategy for who
changes what and no support for merging.

For these reasons none of the techniques can be directly carried
over to developing software in large teams, with a large number of
inter-dependent software documents. The copy-merge approach
does, however, have the advantage of providing maximal
flexibility, allowing all authors to change what they want,
whenever they want. To make copy-merge viable the support for
merging has to be improved.

1.1 Interaction Modes and Requirements

The work in development and maintenance of software systems
typically alternates between group tasks involving many persons
and individual assignments. Group tasks involves activities such
as initial design and specification, work structuring, integration of
components, and also testing and debugging during integration of
components where several groups and individuals are involved.
Individual assignments involve detailed design, implementation of
specific components, documentation, and component testing and
debugging. Much of the implementation work is thus performed
asynchronously by individuals or small groups, more or less
independently. In this situation it is rarely interesting to see what
somebody else is doing right now, but what has been changed over
a period in time, say during the vacation, since the last release, etc.
Now and then there is need for coordination and planning of the
work. Simultaneous interaction with others in the team is then
needed. The environment thus needs to support development in
both synchronous and asynchronous modes of interaction.

In performing a task, like a bug fix or some new implementation
work, it is often the case that several different parts of the system
need to be altered. It can be difficult from the outset to determine
exactly which parts to alter. The environment must thus allow the
developer to access and changeany part of the system within a
reasonable time frame. It is, furthermore, very hard to determine
how long it will take to complete a task. Locking files for a
particular task is thus not acceptable. A policy allowing several

- 2 -

users to check-out a copy of the same version is needed, accepting
that merging will be required at check-in. There might be other
reasons preventing a developer from changing a specific
component, but that should be access policies, not a result of the
architecture of the environment.

Software components are often organized according to their
logical relations into modules, abstract data types, or classes. One
consequence of such an organization is that a change of a small
part of such a component results in the whole component being
considered as changed. This is of particular importance in object-
oriented languages, since the update patterns differ from modular
procedural languages. In an object-oriented language, adding
functionality typically means adding methods in several classes,
all now considered changed. In a procedural language the same
scenario leads to only one new procedure in a new file. The
environment must thus provide mechanisms tolimit the effect of a
change. Furthermore, a class can be seen as a configuration of
operations, each having its own revision history, which brings
configuration aspects into the picture already at this stage.

Since a task often involves changes to several different software
components, the environment must support the creation of
alternative configurations, where new revisions of software
systems can be built and the modifications tested. Changes to
different modules originating from the same task depend on each
other. The environment must give support in keeping track of
dependent changes.

A result of an optimistic check-out policy, as requested above, is
the need for frequent merging of alternatives. The environment
must thus give strongsupport for performing merging and
detecting conflicts. The environment should also provide
mechanisms to enable developers to avoid causing merge
situations by mistake.

1.2 Existing Environments

As examples of the existing revision control systems and the
functionality they provide we take the popular systems used in
Unix environments, RCS [Tic85] and SCCS [Roe75]. These
systems work on complete files which often is a much larger piece
than is affected by a single change, and often is the target for many
independent changes. They also use a pessimistic, lock on check-
out, protocol. This can be problematic when used by a local team,
even creating dead-lock situations, but the problem can often be
sorted out by small meetings.

In a large distributed team, such spontaneous meetings are not
practical, and the problems grow with the number of developers
involved. Furthermore, these systems are using state-based
differences between revisions, calculated from the edited files.
Change-oriented differences, e.g. recording operation-based
differences while editing, seems to have a much larger potential
for supporting merging of variants as described by Lippe and
Oosterom in [LO92] and Lieet al. in [LCD+89]. The conventional
revision control systems do not give much support for teams at the
level of ambition we are heading for. Some systems provide more
advanced support from other points of view (DSEE [LCM85],
NSE [NSE]), but share the common problematic characteristics
outlined here.

For teams at a single site one can rely on network file systems like
NFS [San85] and Andrew [MSC+86] for the file access. These
systems do not, however, solve the team related problems we are
discussing since revision control aspects are not addressed. For
distributed teams the files are often manually distributed (e.g.
copied) by means of systems like email or ftp. The result is that

revision control has to be done at all sites more or less manually.
Automated support for distribution of the files, maintaining the
revision control information, and merging is needed. The recent
product Teamware [Teamware] from Sun Microsystems Inc. is an
attempt to attack some of these problems. It does use an optimistic
check-out policy with merge support, but uses a line-based textual
representation and a state-based differences approach. This
development is encouraging since it supports our fundamental
decision of regarding the copy-merge strategy as viable.

The work on groupware and synchronous editors [EGR91, KP90,
MO92] are other interesting efforts to support the group related
activities discussed above, but does not solve the problems during
asynchronously performed tasks. These editors also do not provide
any mechanisms for revision and variant control since the
metaphor is that there is only one shared document.

1.3 Our Approach

Our conclusion is that an ambitious team-supporting system must
fulfill all of the requirements mentioned in section 1.1. The
demand for flexibility and avoidance of inter-locking between
different developers means that the systems must use an optimistic
check-out approach and no locking. As a consequence, it must
reduce the inconveniences that result from parallel development.

By using a fine-grained revision control model the effect of a
change and thus parts to merge are kept smaller. By using a
change-oriented representation the merge support can be more
sophisticated since it can explore the information about the nature
of the changes. By using a hierarchical representation with
integrated revision control mechanisms it directly supports
keeping track of related changes in the same storage unit. As an
example of where merging might be trivial using these techniques,
consider merging of two variants, one with a change to a local
procedure of a class, and one variant with an addition of a new
procedure.

A shared revision history graph provides overview and will make
team members aware of each others’ changes at a coarse level.
The active diff facility enables team members to also see each
others’ changes at the fine grained level as they are made. This
facility comes very close to the synchronous editing mode
facilitated in group editors.

In summary we have adopted the copy-merge metaphor and
provide mechanisms to reduce the merge nightmare. By exploring
hierarchical organization we get the benefits of the split-combine
metaphor without its drawbacks.

The system presented here has been developed as a part of an
ongoing project on collaborative software development
environments. It is based on previous work in the Mjølner project,
a project on object-oriented software development [KLMM93].
The environment developed in Lund, Mjølner Orm [MMH90],
supported collaborative software development to a limited extent
through its configuration management [Gus90]. The aim of the
current project is to support teams of programmers working on the
same system.

In section 2 we give an overview of the system architecture we are
working with and in section 3 we present the data structure
designed to support fine-grained revision control of hierarchical
documents. This is the main contribution of this paper.

- 3 -

2 AN OVERVIEW OF THE SYSTEM

The system provides a flexible model for editing which covers
both conventional asynchronous editing and synchronous editing.
A synchronous editor allows multiple users to access and edit
shared material simultaneously employing the WYSIWIS (What
You See Is What I See) metaphor. This has been an active research
area within the CSCW (Computer Supported Cooperative Work)
community during the last years [EGR91]. As discussed in the
previous section, this model is inappropriate for program
development since different activities require different strategies,
both synchronous and asynchronous, and a smooth transition
between them [MM93].

First in this section we show the hierarchical representation of
programs and the hierarchical browsing. We then give a short
introduction to the fine-grained revision control functionality,
which automatically keeps track of program modifications and
supports merging and simultaneous editing by different users.
Finally, we present the notion of active diffs, which are used for
making users aware of modifications done by other users.

2.1 Hierarchical Representation and Browsing

A program1 is organized as a hierarchical structure of fragments.
The fragments typically correspond to abstractions in a

Figure 1. Hierarchical program representation

programming language, such as blocks, classes, procedures, and
functions. This hierarchy is fundamental in our architecture. A
program is displayed using this hierarchy, it is edited in terms of
the hierarchy, all elements in the hierarchy are revision controlled,
and the database server stores programs in terms of the hierarchy.

Figure 1 shows an example of the user’s view of a program. In the
figure the program hierarchy is at the top and an evolution graph
below. The program contains several class and procedure
fragments, which are shown and manipulated by a hierarchical
browser allowing parts at one level to overlap but not to be moved
outside its parent window. Subparts are added and removed in the
browser by selecting entries from a menu, e.g. “new class”. The
parts in the figure contain text which is edited by a text editor.

The subdivision into particular parts is not built into the system,
but is described in a grammar specifying the hierarchy. By
supplying different grammars, the browser may be tailored to
different programming languages. It may also be used for other
application areas, such as authoring where a hierarchical
document consists of chapters, sections, and paragraphs. The

1. We use the term “program” here in a generic fashion. It may be
a program fragment, typically a module.

- 4 -

approach for hierarchical browsing was initially developed in the
Mjølner Orm environment [HM88] where it turned out to be a
useful and “intuitive” way of viewing and editing program
structures. Furthermore, in a collaborative environment it may be
used as a means to organize the work.

2.2 Fine-Grained Revision Control

All fragments of the hierarchy are revision controlled, which will
be explained in further detail in section 3 of this paper. Here we
will only give a brief overview. The lower part of figure 1 shows
an evolution graph of the program. An evolution graph contains
results from three different actions: creating revisions, creating
alternatives, and merging alternatives as depicted in figure 2.

A revision is one step in the evolution of a document. It may
contain arbitrary changes compared with its predecessor. Typically
it may contain new classes and procedures, parts may have been
removed, or it may contain minor modifications such as error
corrections. A revision is never changed once it has been frozen.
The only way of modifying a document is to create a new revision
or alternative with the desired modifications.

Alternatives serve two main purposes. One is to split up the
evolution into two (similar) programs with different purposes. A
program may, for instance, be modified into two alternatives for
different target machines but with a core of common contents. The
other purpose is to support simultaneous development among
multiple users. If one user wants to edit a revision that is edited by
another user, an alternative is created instead of a revision. The
users edit their own alternatives and merge them into one revision
when ready.

This hierarchical fine-grained revision control functionality, where
all fragments (in figure 1, for instance) are revision controlled, is
implemented as basic functionality of the database server for
hierarchical documents. It is also supported by the other parts of
the system. One reason is to support group awareness, which we
will expand on in the next section.

2.3 Group Awareness

In addition to the advantages revision control offers to teams of
programmers, our system supports collaboration through group
awareness. It is based on the hierarchical organization and the
revision control functionality. Group awareness is available in two
ways in the system: by the evolution graph which is shared among
all users and by presentation ofactive diffs.

When a user enters the system, the evolution graph indicates the
status of the program. The user can see who is editing it at the
moment and what has happened since last time. In figure 1, for
instance, one can see that there are three alternatives of the

Revisions Alternatives Alternative merging

Figure 2. Different kinds of revisions

document and that two alternatives are edited at the moment since
the editing keys of these alternatives are crossed over. By checking
out a revision not in use for editing, that revision may be edited
asynchronously. By checking out a revision in use by some other
user, an alternative is created, which allows simultaneous editing
of the same revision and later merging. In order to make users
aware of what other users actually are doing in the document, e.g.
in two alternatives simultaneously edited by two users, the system
provides active diffs.

An active diff shows the difference between revisions or
alternatives of the document. The diffs are based on the actual edit
operations performed, which are stored by the revision/database
handler as deltas between revisions. In this way fine-grained and
accurate differences can be presented which reflect what
modifications actually have been performed by the user. An
example is given in figure 1. The differences between the current
and the previous revisions are shown in the text window used for
editing. All insertions appear as underlined text and all deletions
as “-” markers. The “-” markers may be expanded interactively in
order to see the actual deletions. In the same way the underlined
insertions may be collapsed to “+” markers. The presentation is
quite similar to the diffs used in Prep [NCK+92], but in our
systems these markers change interactively as result of the
ongoing editing. Differences at the structure level are shown in a
similar way with the icons in the window titles marked as
additions, deletions, and changes within a part (or one of its
subparts).

Active diffs between arbitrary revisions and alternatives can be
shown. This is done by selecting revisions for diff presentation in
the evolution graph. In this way it is possible to see what changes
were made after a certain revision was created or in what way
alternatives differ. Active diffs can also be shown for different
alternatives currently being edited. If, for instance, a user A sets up
a diff between the alternative he is currently editing and an
alternative simultaneously edited by B, the differences between
the alternatives will be shown continuously, i.e. all modifications
performed by B will appear as markers in A’s window (hence the
name “active diffs”). Notice that these diffs are shown on A’s
demand and A is free to turn off the diff presentation whenever he
desires. The diff markers cannot be edited by A, A can only edit
his own alternative. The example with two users can be
generalized to several users, e.g. using color coding of the markers
to visualize who has changed what. Active alternative diffs may in
this way be used for giving a “synchronous editing” view of the
document, presenting a “what-if-I-merged” situation. The
resolving of conflicts is, however, delayed until merging at check-
in. The awareness provided by the active diffs during editing
contribute to avoiding unintentional conflicting changes and thus
unnecessary resolving of merge conflicts.

- 5 -

2.4 System Architecture

The system is organized as a client-server architecture. The
database server stores the documents and synchronizes the access
from the client applications run by the users. A major difference
from other client-server systems is that the functionality in the
client-application must understand the revision control
mechanisms. For example an editor must be aware of which
revision of the document it is editing and must supply change
oriented diffs as the document is edited. It must also contain the
functionality to re-construct an old revision from these diffs.

3 FINE-GRAINED HIERARCHICAL REVISION CONTROL

In this section we will describe theRevisionTree server, an
engineering database for storing hierarchical information. First, in
section 3.1 and 3.2, we will consider the representation of the
structure of a RevisionTree to represent revisions and alternatives.
In section 3.3 we will discuss revision control of data in the
structure as well, and support for change-oriented editing. A two-
level merging approach of the structure and its data is presented in
section 3.4 followed by an evaluation of the techniques in section
3.5.

3.1 The RevisionTree Model

The data model in RevisionTree is a simple hierarchical structure.
The nodes of the hierarchy corresponds to units which may be
chosen by the application. Typically, in a software development
environment as described in the previous section, the nodes will
correspond to abstractions in the programming language, such as
classes, procedures, and functions. In an application for authoring,
nodes may correspond to chapters, sections, and paragraphs. The
RevisionTree server is only responsible for storing, retrieving and
revision controlling the node data as a sequence of bytes without
making any semantic interpretation of it. Figure 3 gives an
example of the representation of the program module shown in
figure 1.

Each node in the tree is subject to revision control. If, for example,
the data of a node is changed, a new revision of that node is
established. Furthermore new revisions of its ancestor nodes up to
the top level are also created by a change propagation mechanism.
Conceptually this may be viewed as establishing a new revision of
the entire tree. In practice this seems to be reasonable since a new
revision of a part, say a class in a program, actually results in a
new revision of the program as a whole.

Somewhat more formally we define:

A node ischanged if its node data is modified or any of its son
nodes arechanged, added, or deleted.

classRectangle

Figure 3. A hierarchically structured program

node

node data
program module

class Circle

procedure Draw procedure Move

A change is thus propagated up the tree and in particular the root
node is always consideredchanged if there is any modification in
the tree. In order to avoid replication of data, nodes that are not
changed are shared. Figure 4 shows an example.

In (a) the program hierarchy is shown in two revisions. In the
second revision the node data has been altered, conceptually
resulting in a new revision of the program including the new
contents. In (b) a new revision of the changed node and the node
data is created. A new revision of the root node is also created as a
consequence of the change propagation mechanism. The left part
of the tree, unaffected by the change, is, however, shared between
the two revisions. The overhead for the change propagation is
hence reasonably low. In addition, the modified node data is
represented as backward deltas, upon which we will comment
further later in the paper. One reason for sharing revisions in the
tree is, of course, space efficiency, but an equally important
property is to support change-oriented editing and merging, which
is facilitated by the ability to identify what actually has been
modified in the tree. We will expand on this in section 3.3 and 3.4.

Naturally the application must see the same tree structure,
independent of whether the storage is using sharing or not. In the
simple case considered in figure 4 it is obvious that the
representation is correct in this sense.

3.2 Growing a RevisionTree

We will here show the evolution of a hierarchical revision tree in
an example, starting from the structure in figure 3. First a single
evolution line of revisions is presented, followed by an example
showing alternative revisions.

Growing Revisions

Creating a new revision is initiated by an operation to open the
new revision (based on an existing revision), followed by
operations that change the structure of the document or the content
of nodes, and finalized by an operation that freezes the revision.
The change operations are the result of user actions. We do not
here discuss exactly how they are triggered; after each edit
operation, now and then by an “auto save” function, or explicitly
on user demand.

Figure 4. Sharing of node revisions

revision n revision n+1

edited

revision n revision n+1

(a) Conceptual view

(b) Sharing node revisions

edited

- 6 -

Figure 5 shows an example of growing revisions. To maintain a
tree structure when new revisions are created, we add amain root
with the revision roots as sons. This node is used to store the
evolution graph (depicted in the rectangle above the revision tree),
similar to the one in the user interface of figure 1. In figure 5a we
see the result when the creation of a new revision just has been
initiated. In this situation different edit actions can take place. The
user might edit the content of an existing node, node 5, as shown
in figure 5b. The system may have to build nodes also for ancestor
nodes, due to change propagation, if these nodes do not already
exist in the new revision. This is illustrated by node 2’ in our
example. In figure 5c we show the creation of yet another revision
(building on the one we just created) and here we have added a
new node, node 6. Deletion of a node is as simple. We also like to
point out that there are often several changes from one revision to
the other although we have chosen here to show cases where there
is only one change in each step in order not to make the drawings
too complex.

Again we think it is fairly easy to conclude that the sharing
mechanism is correct in the sense above also in these cases.

Growing Alternatives

In the description above only a single evolution line has been
discussed. There is, however, often a need for parallel
development and thus several alternatives. Figure 6 shows how an
alternative is created (revision r4). Node 5 is edited to 5*. Revision
r1 now has two succeeding revisions (r2 and r4). It is, of course,
possible to create several alternatives from one fork node.

3.3 Change-Oriented Editing Support

In the discussion in the previous sections we have ignored the
handling of data in the nodes, or assumed the data to be copied
when node data is edited or a node is copied as a result of the
change propagation mechanism. We will here describe how this is
improved by using a change-oriented delta scheme and in some
cases sharing of the node data, although the nodes themselves are
not shared.

From the RevisionTree server’s point of view, the application will
provide a new revision of the node data together with a delta with
each write request. It is the responsibility of the RevisionTree
server to store this information and return node data and deltas in
future read requests. It is thus the application that has the
capability to construct and combine deltas. The RevisionTree
server uses a backwards delta technique, storing the latest revision
in full, since we expect these to be most likely to be retrieved
frequently.

Figure 7 shows a simple example where the data of a leaf node has
been edited. This is actually a more complete version of figure 4b,
which was somewhat simplified for the sake of clarity in the
presentation. Figure 5 and 6 should also be augmented with shared
data and backwards deltas in order to give the full picture.

Figure 7 differs from figure 4b in two respects. First, the two
revisions of the root node share the same data. The data has not
been modified since the second revision of the root node is the
result of the change propagation. In this way there is no overhead

revision root revision root

5

1 1’

2 2’

5’

3

1 1’ 1’’

2’’

6

2’

5’

Figure 5. Growing revisions

(a) Revision 2 initiated (b) Editing node 5 in revision 2 (c) Adding node 6 in revision 3

main root

1 1’

2

4

3

r1 r2 r1 r2 r1 r3r2

54 54

2 3

r1 r2 r1 r2 r1 r2 r3

Figure 6. Alternatives

1’’ 1*

2*2’’3

5’ 6 5*

1

2

4 5

1’

2’

(a) Single evolution line (b) Alternative revision created

r1 r3r2
r1 r3r2

r4

1’’

2’’3

5’ 6

1

2

4 5

1’

2’

r1 r2 r3 r1 r2 r3 r4

- 7 -

for replicating the data for the two revision nodes. Second, the
edited data of the leaf node is not replicated. The full data is stored
in the latest revision and the data of earlier revisions are
represented as backwards deltas. The deltas are basically the
inverses of the editing operations performed by the user in editing
the data from revision n to revision n+1. In the case of alternative
revisions, the full data is stored in the latest revision of each
alternative. The fork revision where the alternatives spawn thus
has several deltas, one for each alternative. Furthermore, on the
creation of an alternative revision from a node which is not the
latest, the full data has to be re-created from the latest revision by
applying the deltas from the latest revision to the fork node.

The deltas serve several purposes. One is scalability. The deltas
save space when the number of revisions grow, still allowing the
data of any revision to be reconstructed. Another reason is to
provide more advanced change-oriented merge support and
presentation of active diffs, which both are based on the actual
operations performed by the user rather than a computation of the
differences.

3.4 Two-Level Merging

In most cases we expect people to organize their work as little
projects which will be merged into a main development line when
“ready”. Potential conflicts here might be caused by other projects
already merged into the main line. The experience from people
working with this kind of optimistic check-out technique is that
conflicts are rare. In 90% of the cases the same file has not even
been touched by more than one person [Kan93]. It is thus valuable
to have a system that in the first place helps identify these rare
cases of conflicts, and second gives support in solving such
conflicts.

Merge of alternatives thus takes place at two levels, the node
structure and the node data level. On each level the system uses

revision n revision n+1

edited

Figure 7. Deltas and sharing of data in node revisions

∆

default rules to suggest a merged result. The user can then modify
this temporary result to create the desired merged revision. In
figure 8 we illustrate this technique on a small example, merging
alternatives r3 and r4 in our running example to a new revision r5.
The two alternatives have a common root (revision r1). In one
alternative (revision r2 and r3) we have edited node 5 and added
node 6 as a son of node 2. In alternative r4 we have edited node 5.

On thenode structure level the default rule is to incorporate all
changes, additions and deletions occurring in any of the two
alterative development lines.

In the example this means:

• Node 3&4 are included since they are shared among revi-
sion r1, r3 and r4.

• Node 6 is included and marked as added since it was added
in revision r3.

• Node 5 is included and identified as a conflicting node
since it was edited in both development lines.

• Node 2 is marked as conflicting since it contains a conflict-
ing node.

If the user is not happy with this result he can for example delete
node 6 from the merged result. In case of conflicting modifications
of the node structure, e.g. a node inserted in one alternative in a
subtree deleted in another alternative, this has to be resolved
manually by the user.

On thenode data level the conflicting nodes are resolved by the
application. Again, the application provides default rules in order
to suggest an alternative. The text editor we are working with is
optimistic and will suggest that all textual changes in a conflicting
node should be included. Changes are presented in a similar way
as shown in figure 1. Also here the user can remove some of the
changes and do any modifications he wants.

After a merge the developer might want to continue to work on an
alternative, creating new revisions, although some of the changes
he has made have already been merged. At a future point a merge
will include all recent changes and these that were ignored at the
previous merge. The mechanism thus supportsincremental
merging.

3.5 Evaluation

The hierarchical structure of revisions in a RevisionTree may be
considered as a kind of configuration management. However, the
aim of the model is not primarily to support the representation of

1’’ 1* 1’’*

2’’*2’’3

5’ 6 5* 5’*

1

2

4 5

1’

2’

Figure 8. Revision 3 and 4 merged to revision 5

∆

2*

∆

r1 r3 r5r2

r4

∆,∆

r1 r2 r3 r4 r5

- 8 -

generic configurations and dynamic version selection, as described
in [Tic88], but rather to support the evolution process of a
configuration. One common feature of our model and the change
oriented model by Lie et al. [LCD+89] is that the revisions are
global. This means that a revision of the document first will be
selected, and then the individual nodes in that single revision can
be accessed.

Our model is similar to the unified framework for version
modeling in engineering databases proposed by Katz [Kat90] in its
revision controlled component hierarchies and the change
propagation mechanism. However, whereas Katz model is
concerned with limiting the scope of the change propagation, our
model always propagates changes all the way to the root. In order
to do this efficiently, the sharing of node revisions as presented
above and the delta techniques are crucial. A system with
integrated revision control functionality using sharing and change
propagation techniques is the EH editor [FM87]. The aims of EH
differs from ours. EH uses AVL-DAGs for storing documents as a
list of lines, each vertex containing a line, whereas we are
modeling the document structure where each node contains a
class, procedure, etc. Furthermore, our model is designed for
supporting merging of configurations, comprising both the
configuration tree and node data, which is not addressed in the
above models. Yet another fundamental difference from many
other systems is that our approach handles revisions as a basic
property of the database server and furthermore that the
applications (e.g. the editor and browser as presented in section 2)
support revision control. This integrated revision control is in
contrast to most other systems which “glue” revision control on
top of existing files and tools.

Two major performance and scalability concerns may come up
regarding our representation: storage overhead and time to
produce an old revision of the information in a node. The storage
overhead comes from storing deltas from old revisions and from
the overhead for structure information of the tree. The structure
information is fairly small, one pointer per node, which should be
negligible if the content of the node has a reasonable size, like a
procedure or a text paragraph, which is the intended use. Also
keeping track of deltas costs one pointer to be compared with a
separate file in the traditional approach costing file directory
overhead and much longer access times. The deltas themselves
could (in the worst case) be stored in the same format as standard
diffs (as generated by the Unix utilitydiff, used by other revision
control systems), so there is no reason to believe that our storage
form is inherently worse than current techniques. There are in fact
several aspects that indicate that the revision trees might be more
memory efficient. First, the change-oriented deltas can turn out to
be more compact than traditional line-based text-oriented diffs,
especially if changes typically are small compared to the length of
the source line. Second, RevisionTrees use a large amount of
sharing of common parts. This will pay off as the number of
alternatives grow, since a traditional representation must store a
full document for all parts in each alternative.

Regarding the time overhead to calculate an old revision we can
note that this is done on demand on fairly small pieces of
information assuming the hierarchical storage is used as intended.
The time for the calculations needed should be compared to
communication times between the client and the server (where the
full node information and necessary deltas are sent as one
message) and file access times (where our model gives essentially
one read per delta while traditional diffs requires also a file to be
opened and closed). We are thus confident that performance for
applying deltas will not be a problem in practice even for large
applications.

Scalability in terms of number of simultaneous users is also a
concern. The overhead for the representation of the possibly large
number of alternatives caused by simultaneous users was
addressed above. Likewise, we do not expect any performance
problems with the active diffs involving a large number of
alternatives since diffs are set up when needed and then probably
only for a subset of all alternatives. Even if an active diff is set up
for a large number of alternatives, the order of magnitude for the
response times required still is seconds rather than fractions of a
second. Without having any experimental evidence, we expect this
modest requirement can be fulfilled. Finally, merging between a
very large number of alternatives may be a scalability problem.
However, a successive two-way merge of alternatives will
probably be practically feasible. Typically, alternatives are created
from a main development line (this may be the main development
line of the system as a whole or just the main development of the
alternative a group currently is working with) and subsequently
merged with the main development line again. Furthermore, we
expect merging will be a fairly straightforward process, since
merge conflicts probably will be reasonably infrequent as a result
of the group awareness provided by the active diffs. This
expectation is supported by the experience from using the group
editor GROVE as reported in [EGR91].

3.6 Implementation Status

The fine-grained revision control model has been implemented on
top of an existing tree-structured storage implementation [Gus90].
A corresponding editor for structured text documents also exist as
a first application and try-out case. The support for merging in the
editor is at the time of writing implemented as another sub-project
and there still remains development of full support for merging on
the detailed level. Currently multi-server functionality is not
supported.

4 FUTURE RESEARCH

The next step in development of the server is to support multiple
servers in order to improve speed and stability for geographically
distributed teams. This involves developing automatic merging of
structures (after network or server failure) and protocols to keep
the duplicated database consistent at all sites. Here questions about
access policies and protection will also be urgent both for access to
the data, revisions, and active diff information. We have so far
ignored these questions and focused on enabling sharing and
collaboration in the first place.

Although we have only mentioned supporting merge of two
alternatives at the time, there is no inherent problem in merging
several alternatives at the same time using the same default rules.
In fact, it would be an interesting facility to hypothetically merge
all existing alternatives of a system to get an overview of how the
system develops, including future merge conflicts to prepare for.

In the long run we aim at using this technique also for storing
structured program information in Abstract Syntax Tree (AST)
form. This will involve, among other things, development of
algorithms for representing, and applying deltas to trees. Some of
the needed algorithms are documented in [Gus90]. In the Mjølner
Orm environment we also need to store ASTs decorated with
semantic information. This includes finding representations of
deltas of semantic information which will avoid long re-
calculations to take place when revision focus is changed. We will
also investigate the use of semantic information for making more
intelligent diff and merge functionality, not only taking lexical

- 9 -

changes into account but also the semantic consequences of a
change [HPR89].

5 CONCLUSIONS

We have identified fine-grained revision control as a crucial
enabling technique for supporting software evolution by possibly
geographically distributed teams of software engineers. The main
characteristics of our design includes support for versioning in
hierarchically structured information, fine-grained revision
history, fine-grained change-oriented diffs, and sharing of
common parts among document revisions. The model supports
storing of documents, programs, and other tree-structured
information. It integrates revision control seamlessly into all levels
of a system, the database as well as the applications (e.g. editors
and browsers).

The novel benefit of the design is that it enables parallel
development by allowing optimistic check-out and providing
advanced support for merging alternatives both regarding structure
and content. It supports flexible modes of interaction ranging from
asynchronous to a form of synchronous work, where members of a
team can be made aware of each others’ actions without
interference with each other.

ACKNOWLEDGMENTS

The authors wants to thank all the members of the software
development research group at Dept. of Computer Science, Lund
University, for stimulating discussions which have contributed
substantially to the work presented in this paper. In particular, we
want to thank Torsten Olsson who is working on the structured
document editor and Görel Hedin for constructive comments on
earlier drafts of this paper.

The work presented in this paper was supported in part by
NUTEK, the Swedish National Board for Industrial and Technical
Development.

REFERENCES

[EGR91] Ellis, C.A., Gibbs, S.J., Rein, G.L., Groupware: Some
Issues and Experiences,Communications of the ACM, 34(1),
January, 1991.

[FM87] Fraser, C.W., Myers, E.W., An Editor for Revision
Control,ACM Transactions on Programming Languages and
Systems, 9(2), pp. 277-295, April 1987.

[Gus90] Gustavsson, A., Software Configuration Management in
an Integrated Environment, Licentiate thesis, Dept. of
Computer Science, Lund University, Lund, 1990.

[HM88] Hedin, G., Magnusson, B., The Mjølner Environment:
Direct Interaction with Abstractions,Proceedings of
ECOOP’88, 2nd European Conference on Object-Oriented
Programming, Lecture Notes in Computer Science, vol. 322,
Springer-Verlag, 1988.

[HPR89] Horwitz, S., Prins, J., Reps, T., Integrating
Noninterfering Versions of Programs,ACM Transactions of
Programming Languages and Systems, 11(3), July 1989.

[Kan93] Kannegaard, J., The nineties are an exciting time for
software development, Keynote address at TOOLS
Europe’93, Versailles, March, 1993.

[Kat90] Katz, R.H., Toward a Unified Framework for Version
Modeling in Engineering Databases,ACM Computing
Surveys, 22(4), 1990.

[KLMM93] Knudsen, J.L., Löfgren, M., Madsen, O.L.,
Magnusson, B.,Object-Oriented Environments - The Mjølner
Approach, Prentice-Hall, 1993.

[KP90] Knister, M.J., Prakash, A., DistEdit: A Distributed Toolkit
for Supporting Multiple Group Editors,Proceedings of
CSCW’90, ACM 1990 Conference on Computer Supported
Cooperative Work, Los-Angeles, 1990.

[LCM85] Leblang, D.B., Chase, Jr., R.P., McLean, Jr., G.D., The
DOMAIN Software Engineering Environment for Large
Scale Software Development Efforts.Proceedings of the 1st
International Conference on Computer Workstations.IEEE,
November 1985.

[LCD+89] Lie, A., Conradi, R., Didriksen T., M., Karlsson, E.-A.:
Change Oriented Versioning in Software Engineering
Database,ACM SIGSOFT Software Engineering Notes, Vol
17, No 7, Nov 1989.

[LO92] Lippe, E. and Oosterom, N. van, Operation-Based
Merging, Proceedings of the Fifth ACM SIGSOFT
Symposium on Software Development Environments,
17(5):78-87, December 1992.

[MM93] Minör, S., Magnusson, B., A Model for Semi-
(a)Synchronous Collaborative Editing,Proceedings of
ECSCW’93, Third European Conference on Computer
Supported Cooperative Work, Milano, Kluwer Academic
Publishers, 1993.

[MMH90] Magnusson, B., Minör, S., Hedin, G., et al., An
Overview of the Mjølner Orm Environment,Proceedings of
the 2nd International Conference TOOLS (Technology of
Object-Oriented Languages and Systems), Paris, 1990.

[MO92] McGuffin, L.J., Olson, G.M., ShrEdit: A Shared
Electronic Workspace, Cognitive Science and Machine
Intelligence Laboratory, Tech. report #45, University of
Michigan, Ann Arbor, 1992.

[MSC+86] Morris, J.H., Satyanarayanan, M., Coner, M.H.,
Howard, J. H., Rosenthal, D.S.H., Smith, F. D: Andrew: A
Distributed Personal Computing Environment,CACM, Vol
29, No. 3, March 1986.

[NCK+92] Neuwirth, C.M., Chandhok, R., Kaufer, D.S., Erion, P.,
Morris, J., Miller, D., Flexible Diff-ing In a Collaborative
Writing System, Proceedings of CSCW’92, ACM 1992
Conference on Computer-Supported Cooperative Work,
Toronto, 1992.

[NSE] Sun Micro Systems.Introduction to NSE.

[Roe75] Roekind, M.J., The source code control system.IEEE
Transactions on Software Engineering, SE-1(4):364-370,
December 1975.

[San85] Sandberg, R., The Design and Implementation of the Sun
Network File System.Proceedings Usenix,June 1985.

[Teamware] Teamware Users’ Guide, SunPro Manual set. Sun
Micro Systems, Mountain View, To appear.

[Tic85] Tichy, W.F., RCS - a system for revision control.Software-
Practice and Experience, 15(7):637-634, July 1985.

[Tic88] Tichy, W.F., Tools for Software Configuration
Management,Proceedings of the International Workshop on
Software Version and Configuration Control, Grassau,
Germany, 1988.

