
Department of Computer Science
Lund Institute of Technology

Lund University
P.O. Box 118, S-221 00 Lund

Sweden

Collaborative Editing - distribution and replication
of shared versioned objects

Boris Magnusson
Ulf Asklund

LU-CS-TR:96-162

Also presented at European Conference on object Oriented Programming
1995, in Workshop on Mobility and Replication, Aarhus, August 1995



ECOOP95 WS on Mobility and Replication

1

 Collaborative Editing – distribution and
replication of shared versioned objects.

Boris Magnusson and Ulf Asklund
Dept of Computer Science, Lund University

Box 118, S-221 00 Lund, Sweden
e-mail: {Boris|Ulf}@dna.lth.se

Position paper. We take the starting point in a system for collabora-
tive editing in a distributed environment. It includes integrated sup-
port for fine-grained version control and configuration management.
We describe how such object can be migrated to independent sites,
edited, and then merged into one object with several alternatives. We
also show that our model is meaningful to understand other applica-
tions.

1 Background

The original motivation for our work was to support teams of software develop-
ers working together, possibly in a distributed environment. In this situation
the need for version control turned out to be even more crucial than usual. Ver-
sions and alternatives are fundamental when several people are working simul-
taneously on the same data. Questions like What change did I make? What are
the difference between our versions? and What changes have been made to the
systems during my vacation? arises. In order to make it easy to answer such
questions we came very quickly to the conclusion that a collaborative editing
system for software needs a tightly integrated version control system with an
intuitive user interface. In the system we have built (COOP/Orm) we have made
a number of nontraditional design decisions:

• Version control is part of the fundamental storage model which means that
all processors, including editors, must understand (and maintain) versions and
deltas.

• Versions can naturally not change, which means that an object can only be
changed through addition of versions and alternatives. An object is considered a
collection of immutable versions of its contents.

• Lock on check-out does not scale up to a large number of users or to large
software systems. We therefor allow changes at any time (creating alternatives)
and provide support for merging alternatives.

• Hierarchy is a common structure in documents (in programs, papers, books
etc.) and is supported in our storage model.

The system is designed for a multi Client/multi Server situation. The Client-
Server setup takes care of serializing access from the clients to the file in the
filesystem where the information is stored in the end. The Server/Server com-
munication is the interesting aspect from distribution point of view. This proto-
col supports replication of the objects at different sites. It is motivated by the
possibility of network failures and by performance. From the users point of view



ECOOP95 WS on Mobility and Replication

2

the Client/Server protocol provides the important functionality while the distri-
bution provided by the Server/Server protocol should not be visible.

In the rest of this position paper we will try to explain how the approach of
representing the full sequence of immutable versions of an object actually sup-
ports migration but still provides a useful distributed system for an interesting
class of problems.

2 Supporting replication through integrated version control

Replication at different distributed sites is in our situation motivated primarily
by performance and availability in case of failures. The problem is of course that
if the replicated data is changed at several sites it is in general very hard to get
back to one consistent copy of the object again. This is hard for changes to plain
data attributes, but soon unmanageable when changes to the structure of the
object are allowed. Simpler cases can be considered. If, for example, an object is
not changed there is no problem with replication, but in general this is not an
acceptable restriction. If there are only additions to the replicated objects, the
problem is smaller than when general changes are allowed. If the additions are
unrelated with respect to order, or can be ordered automatically, bringing the
replicas back is simple. Our approach can be viewed as taking this additions
only approach and applying it to an object with all its versions rather than a
particular version of the object.

The view that an object is representing its full history (not just a snapshot as
is common) is fundamental here. This view means that the object can only be
modified by creating a new version, that is an addition. Note that the new ver-
sion of the object might be defined after deletion of some part of the object from
an earlier version of the object. Also in this case the object is still growing with
another version.

The word ’merge’ can in our system be used for operations on two different
levels, on the version history of the object, and on the contents of the object
itself. Normally our servers are in contact and communicate changes to repli-
cated objects, made at the different sites. There can, however, also be for exam-
ple network failures which means that replicated objects can drift far away in
their version history and needs to be synchronized when the failure is removed.
In this case, each replica might been extended with one or more new versions.
These additions are not related and thus the two version histories can automat-
ically be ’merged’. The layout of a graphical representation of the version graph
might have to be changed to accommodate the ’other’ versions as well, but this
is only a presentation change, having no semantic meaning.

The second meaning of ’merge’ here is to combine two alternative versions of
an object to a single new version. This merge problem is not unique to replica-
tion, but will appear also in a single server situation, and indeed also with a sin-
gle user working on parallel development tracks. Our support for this builds on
storing the edit operations, utilizing the hierarchical representation to recog-
nize large portions of a structured object that are unchanged and default rules
for suggesting a merge. It also detects conflicts that has to be solved by the user
doing the merge. The only addition to this scheme that comes from replication is
that an alterative can be created without intent and a future merge might have



ECOOP95 WS on Mobility and Replication

3

to be done. We have described elsewhere the details of our merging facilities and
compact storage representation [MM93, MAM93, Ask94, Ols94, MG95, MA95].

3 Discussion

Our model has been developed to support cooperative work. The model seems to
work well as a basis for collaborative editors. The ability to support simulta-
neous development is here very valuable since there is a tendency to move away
from traditional lock on check-out policies in software development situations.
The experience seems to be that conflicting changes are fewer than feared.
Other mechanisms, such as policies for sharing the work, seems to limit the
need for several persons to actually change the same document at the same
time. On the other hand, not providing the possibility causes sever problems
and in the end the version control system (if insisting on locking) is cheated.
Our strategy is to provide powerful support for merge to make this step easy
when it is needed. Replication in this situation is thus feasible.

There are probably other distributed applications where the same scheme
could be used. At first it would appear as unacceptable to use this approach for a
bank – a merge of replicated versions of a bank account could result in a over-
draft of the account. On the other hand this seems to be what banks actually do
when allowing withdrawal of money from automatic teller machines when there
is no connection to the bank (at least most Swedish banks allow this, but limit
the amount of money that can be withdrawn and thus the risk).

Another application that comes to mind is airline reservation systems that
seems to be allowing a certain amount of replication and distributed changes. A
similar situation arrises when booking a flight, it appears to have free seats,
accepts preliminary bookings, but a little later reservations are refused since
the flight is suddenly full. This can be seen as a merge situation with a detected
conflict. The default behavior here is to refuse to do the merge when a conflict is
detected.

In conclusion there thus seems to be other applications that use a similar
approach. Approaches that can be understood in our model.

Another interesting question is what constitutes a transaction in our model.
We work with changes to the version history of an object, rather than changes to
a particular version of the object. The answer is thus that we work with
extremely long transactions, being the creation of a new version of the object
which has a well defined start and finish. Other users can be engaged in other
long transactions, creating other versions of the object at the same time. We
even (plan to) allow users to look at versions as they are being create by other
users (but not change them of course). It is here interesting to look at such ver-
sions, to compare them with finished or versions under creation and to find out
if there are any conflicts although the version is not yet finished. In our model
these long transaction, are thus not atomic at all. The necessary protection from
havoc is provided by giving each user a version of his own to work with. The
shared information is really the version history, but also here atomicity is not
needed since only additions are made.



ECOOP95 WS on Mobility and Replication

4

References
[Ask94] Ulf Asklund. Identifying Conflicts During Structural Merge. In

Magnusson et al. MHM94.
[Ced93] Per Cederqvist. Version Management with CVS. Available from

info@signum.se, 1993.
[Gus90] A. Gustavsson. Software Configuration Management in an Integrated

Environment. Licentiate thesis, Lund University, Dept. of Computer
Science, Lund, Sweden, 1990.

[HH93] Anja Haake and Jörg M. Haake. Take CoVer: Exploiting Version Support
in Cooperative Systems. In Proceedings of INTERCHI’93, ACM Press,
Amsterdam, The Netherlands, April 24-29 1993. Addison Wesley.

[HM88] G. Hedin and B. Magnusson. The Mjølner environment: Direct
interaction with abstractions. In S. Gjessing and K. Nygaard, editors,
Proceedings of the 2nd European Conference on Object-Oriented
Programming (ECOOP’88), volume 322 of Lecture Notes in Computer
Science, pages 41–54, Oslo, August 1988. Springer-Verlag.

[Kat90] Randy H. Katz. Toward a Unified Framework for Version Modeling in
Engineering Databases. ACM Computing Surveys, 22(4), December 1990.

[KLMM93] J.L. Knudsen, M. Löfgren, O.L. Madsen, and B. Magnusson, editors.
Object-Oriented Environments - The Mjølner Approach. Prentice-Hall,
1993.

[LvO92] Ernst Lippe and Norbert van Oosterom. Operation-based Merging. In
H. Weber, editor, SIGSOFT’92 Proceedings, Tyson’s Corner, Va.,
December 1992. ACM. SIGSOFT Software Engineering Notes, 17(5).

[MAM93] Boris Magnusson, Ulf Asklund, and Sten Minör. Fine-Grained Revision
Control for Collaborative Software Development. In Proceedings of ACM
SIGSOFT’93 - Symposium on the Foundations of Software Engineering,
Los Angeles, California, 7-10 December 1993.

[MA95] Boris Magnusson and Ulf Asklund. XXX: A Model for Fine Grained
Version Control of Configurations. Draft report, Lund University 1995.

[MG95] Boris Magnusson and Rachid Guerraoui. Support for Collaborative
Object-Oriented Development. Draft report, Lund University 1995.

[MHM94] Boris Magnusson, Görel Hedin, and Sten Minör, editors. Proceedings of
the Nordic Workshop on Programming Environment Research, Lund
University of Technology. LU-CS-TR:94-127, Lund, January 1-3 1994.

[MM93] Sten Minör and Boris Magnusson. A Model for Semi-(a)Synchronous
Collaborative Editing. In Proceedings of the Third European Conference
on Computer Supported Cooperative Work, Milano, Italy, 1993. Kluwer
Academic Publishers.

[MMH+90] Boris Magnusson, Sten Minör, Görel Hedin, et al. An Overview of the
Mjølner Orm Environment. In J. Bezivin et al., editors, Proceedings of the
2nd International Conference TOOLS (Technology of Object-Oriented
Languages and Systems), Paris, June 1990. Angkor.

[Ols94] Torsten Olsson. Group Awareness Using Fine-Grained Revision Control.
In Magnusson et al. MHM94.

[Tic88] Walter F. Tichy. Tools for software configuration management. In
Proceedings from International Workshop on Software Version and
Configuration Control, Grassau, Germany, February 1988.

[TJ88] Dave Thomas and Kent Johnson. Orwell: A Configuration Management
System For Team Programming. In N. Meyrowitz, editor, Proceedings of
OOPSLA’88, San Diego, Ca., September 25-30 1988. ACM. SIGPLAN
Notices, 23(11).

[Wat] Gray Watson. CVS Tutorial. Available from gray.watson@antaire.com.


