
Department of Computer Science
Lund Institute of Technology

Lund University
P.O. Box 118, S-221 00 Lund

Sweden

Fine Grained Version Control of
Configurations in

COOP/Orm

Boris Magnusson
Ulf Asklund

LU-CS-TR:96-166

Also published in: Proceedings of SCM6, Symposium on Configuration
Management, I. Sommerville (Ed.), Berlin, March 1996,

LNCS, Springer Verlag



1

Fine Grained Version Control of Configurations in
COOP/Orm

Boris Magnusson and Ulf Asklund

Dept. of Computer Science, Lund Institute of Technology,
Box 118, S-221 00 Lund, Sweden

E-mail: {Boris | Ulf}@dna.lth.se

Abstract. This paper describes a unified approach to version
control of documents and configurations. Hierarchical struc-
ture, which is present in most documents such as programs, is
recognized and utilized in a fine-grained version control sys-
tem. The same mechanism is used for version control of config-
urations and extended to handle DAGs as well as trees.
Change propagation within one hierarchical document is auto-
matic while bindings between documents are explicit. The
model is novel because of its integration of version and config-
uration control, fine-grained version control, and explicit
graphical user interface. It supports teams of distributed users
by offering optimistic check-out with strong support for merg-
ing of alternatives.

1 Introduction
Software systems are made up from hierarchical collections of hierarchical documents.
Traditionally, version control has been applied to keep track of the revisions of individual
documents, while configuration management has focused on how to form systems or
sub-systems out of collections of documents[Roe75, SCCS, Tic85, Tic88]. Although this
separation has some benefits in factoring out minimal functionality into single tools it
suffers from the lack of integration. We will here illustrate some of the most severe prob-
lems with this approach as we see it, without any ambition of making the list complete.

Document size There are conflicting demands on the size of the involved documents.
Even a small change to a document creates a new version of the whole document. From
a version control point of view it is a benefit if documents are kept small since the preci-
sion of the information the version control system will give us will get higher.
From the configuration management point of view it is an advantage if the documents are
fewer (and thus larger) since the complexity grows with the number of documents in-
volved and with their versions. The number of meaningless or non-compatible configu-
rations of versions of documents grows exponentially.

Change Size It is often the case that a change affects only a small part of a document.
Still, the version control and locking scheme is based on the whole document which is
often found as unnecessary coarse.

Related documents It is often the case that many documents are tightly related and are
in fact version controlled together, but many systems can not represent the connection
between related changes to different documents.

Concurrency control Lock on check-out, as commonly used by many version control
systems, gets awkward to use when the group of people involved grows. With a locking
system there is a drive for using many small documents since then more people can work



2

simultaneously without needing to change the same piece of information at the same
time. Locking also makes such a system hard to use in a distributed environment.

Configurations Configurations are often only described indirectly through make-files,
and although these can be versioned they can not handle structural changes to a config-
uration since the underlying file system is not versioned.

Awareness It is often hard to find out what documents other developers have changed,
and what changes they have made, or even who checked out a particular document. Pro-
viding some level of awareness also seems essential in providing flexible work process
support.

Some recent systems have identified and addressed some of the problems above. As an
example, CVS[Wat,Ced93] can manage collections of files and also allow multiple
checkouts, but give only rudimentary help for merge. TeamWare [Team] facilitates dis-
tributed development by allowing replicated repositories and facilitating merge of the
(SCCS) history files. Again with weak support for merge of the documents themselves.
ClearCase [Cla95], on the other hand, has strong support for merge, resolving simple dif-
ferences automatically and identifying conflicts for human resolution. This through an
interface that, according to Ovum [RBI95] sets a new standard for the industry.

To the best of our knowledge no existing configuration management system ad-
dresses the problem of awareness.

Version control can be seen as added to current file systems as an afterthought and
editors, compilers etc. do not deal with this information. We see version control as essen-
tial for any system development and it should therefore be a basic mechanism understood
by all processors.

1.1 Our approach

The starting point for this work has been the aim to support teams of programmers work-
ing together, providing a collaborative editing environment, an area that combines prob-
lems from both CSCW (Computer Supported Cooperative Work) and SE (Software
Engineering). Collaboration and sharing information naturally demands a version control
system and ambitions to support also synchronous editing[MM93] has led us to support
unusually fine-grained versions. We have also taken the position that systems that use a
pessimistic, lock on check-out, approach do not scale up to many users in a geographi-
cally distributed environment. This has lead us to design our environment on an optimis-
tic approach where developers always can create new versions (forming a new
alternative if necessary) and then providing strong support for merging alternatives using
an operation-based diffing approach[LvO92]. For configuration management we have
taken the position that configurations should be unified as much as possible with other
documents and for example also be version controlled with operation-based diffs
[MAM93] .

Another starting point for this work is the Orm environment[MHM +90] developed
in the Mjølner project [KLMM93]. This is a tightly integrated environment built on in-
cremental techniques. Here there are no processors like compilers and linkers visible to
the developers, this is merely functionality offered, and managed by the environment.
The developer edits and executes. The integrated approach chosen in constructing Orm
has also included a storage model for programs in structured form [Gus90]. This storage
form has many similarities with engineering databases as described in[Kat90]. The
Mjølner/Orm environment includes version and configuration facilities. Compared to
what is presented in this paper it is working on a much coarser level and offers a less user



3

friendly interface. Nevertheless it is offering versioned connections between modules
and also to ‘grammars’ defining the language implementation. It is the experience from
this environment that have lead to the further development presented in this paper. ‘Fine
grained version control’ as a term was introduced in Orwell [TJ88] meaning version con-
trol at the method level rather than at the module or class level in object oriented pro-
gramming. We use the term in the same meaning, but go further in decreasing grain size.
We record each edit operation using ‘operation based diffs’ in the meaning of [LvO92]
and encourage creation of versions more frequently, and thus extend the meaning of fine-
grained version control.

Our research has been guided by a goal to explore the possibilities to increase the
level of functionality offered to the users. In doing so we have chosen an integrated ap-
proach for our prototype environment and put less emphasis on how the parts of the en-
vironment integrate with existing systems. As an example we do not put priority in this
phase of our work on how to make it possible to use existing editors (such as emacs,
which are not version aware) with our system. The situation can be compared with intro-
ducing word processors which also represent integrated environments where existing
text editors can not be used. Although not everybody have given up tool-based word pro-
cessing, word processors still represent an important step forward for many users.

The COOP/Orm environment attempts to attack the problems outlined in the intro-
duction with the following techniques:

• Representation of hierarchically structured documents.
• Integrated representation of user data and versioning information.
• Explicit version graph for browsing and comparing versions.
• Versioned bindings between documents.
• Support for parallel development and merge of alternatives.
• Active diffs for on-line awareness of changes by other users.
• Transparent distribution for users at different sites.

This paper is starting with a summary of requirements for an integrated version and con-
figuration system for structured information. A description of the basic functionality and
document model in our environment is presented in section 3. In section 4 we describe
how configuration management can be introduced, based on this model. In section 5 we
evaluate the functionality of our system and compare it with other attempts that go be-
yond traditional systems. In the following sections we summarize the status of our im-
plementation, future work and our conclusions.

2 Terminology and requirements
We see software documents as highly structured information, preferably managed by an
integrated environment. This view is in contrast to the common view of software as plain
text files. The following list of requirements on support for versions and configurations
has been significantly influenced by Katz work focusing on engineering databases for
CAD/CAM systems [Kat90], which also demands support for highly structured informa-
tion. Our view is similar to the one presented in [Kat90], but not identical, e.g. we see
creation of versions as a more lightweight and frequent operation than he does. Katz also
points out the need to limit the effects of a change to avoid a too large number of combi-
nations of versions of documents, a problem we address explicitly below.



4

Terminology:

Information unit -smallest part of a document that is version controlled as one unit. This
is typically a procedure (or even smaller: its interface, implementation, and documenta-
tion), or a paragraph of text in a structured text document.

Composite unit - hierarchically organized collection of Information units.

Document - semantically meaningful named Composite unit such as a module, a class,
or a chapter in a book. A Document includes information about its version history, and
all versions of the Information units.

Version - a snapshot of a Document. A Version can never be modified, but new Versions
of the Document can be created. A Version has anOriginating Version from which it is
developed (the Originating version of the first Version of a Document is empty).

Variant - a special case of Version where there are several alternative versions developed
from the same Originating version.

Delta - the difference between two successive Versions of a Document.

Change propagation - creation of a new version of an Information unit will trigger cre-
ation of new Versions of all Composite units including the changed Information unit, and
in particular also of the Document it is part of.

Binding- relation between a Version of a Document and specific Versions of other (Im-
ported) Documents.

Configuration- set of Versions of Documents related through Bindings.

Requirements on the storage model:

• Support for semantically meaningful named entities.

• Mechanisms to form Composite units out of more primitive parts.

• There should be support for configurations in the limited, tree structured case,
since it is very common and offers important simplifications.

• It must be possible to include a Document in several different Configurations,
thus the composition mechanism must support a general DAG (directed acyclic
graph) structure rather than just Trees.

• From a Version of a Document it must be possible to determine the Version of all
included Information units, local to the Document or Imported.

• A Document included in a Configuration through more than one path might as a
result be included in more than one Version simultaneously.

• It must be possible to group changes (possibly to different Information units) into
the same Delta. This requirement is motivated by the need to limit the number of
created Versions and to represent logical changes.

• The model must support distributed development as transparent as possible.

• The model must support users’ awareness of what other users are changing or
have changed.



5

A configuration management system must also provide a good user interface and an ef-
ficient and compact implementation of the model.

3 The COOP/Orm hierarchical document model
We have chosen to support hierarchically structured documents directly since they are
very frequently occurring and simple to represent and handle. Such documents can be
seen as a kind of internal configurations where each unit as well as the configuration as
a whole is version controlled together. In figure 1 we see an example of a typical struc-
tured document, a program with a class, its operations and documentation. The user in-
terface with nested windows is described in [HM88]. The development history of the
document is presented as a graph in a window. This graph can be used to browse the ver-
sion history of the document, view particular versions of it and compare two versions,
either sequential or further apart in time.

Updating a document involves three steps, (1) Selecting an originating version and
creating a new version, (2) making a sequence of changes to one or several information
units, and finally (3) terminating the update by ’freezing’ the new version. Following the
‘change propagation’ scheme, all change to an information unit will go into the corre-
sponding delta together with new versions of all composite units they are part of. Since
a document is a tree structure, seen as repeated composite units, the change propagation
ripples up to the top of the tree. As a result of this scheme, selection of a version of a doc-
ument precisely determines the version of all information units of the document. The
changes to a document can include changes to information units as well as to the structure
of the document (adding/deleting units).

Figure 1 Hierarchical document with version graph. We see version ‘7’ of the docu-
ment with marked differences compared with version ‘2’ of the document.



6

Version aware editor Hierarchical documents are browsed and edited with a special-
ized editor which allows the user to directly see the differences between versions of a
document, both in terms of changes to an information unit as well as to the configuration
itself, such as adding or deleting of units in the configuration. Creating a new version is
seen as a comparison with its originating version and changes are highlighted as they are
entered.

Explicit version graph An explicit version graph with a graphical user interface al-
lows the user to view and browse the document in terms of its versions. In figure 1 we
see the document in version ‘7’. In the same view we also show all differences relative
to version 2. Signs like ‘+’, ‘!’ and ‘-’ marks units that have been added, changed or de-
leted between the two compared versions. In open units we can see the detailed changes
made, here added text is underlined and deleted text is overstroken. The editor is de-
scribed in more detail in [Ols94]. The version graph also shows that the document has
two alternatives, and changes from the alternative have been merged twice (indicated by
the two arrows).

Local revision history All the information units in a hierarchical document share the
same revision history, but a single unit might be unchanged (or even non-existent) in
many of the versions of the document. This information is shown on demand in the ‘local
version graph’ of the unit (an example for the ‘Documentation’ window of figure 1 is
shown in figure 2). Here we can see that this particular unit did not exist in version 1,2,4
(dimmed boxes), thus created in version 3 and equal in some versions (3=5 and 6=7,
marked with the double arrows). The user can thus browse the document both in terms
of structure and versions at any level of detail at the same time.

Merge of variants Users working on the same document are free to create new ver-
sions and variants of the document. The editors offer strong support for merging of vari-
ants, suggesting default results and identifying conflicts for the user to solve [Ask94].
During merge changes to the contents of information units as well as changes to the struc-
ture can be handled.

Distribution A version of a document is never changed once it is established. The re-
vision history of a document can only be extended with new versions. This means that it
is not problematic to replicate a document in a distributed multi-server environment
[MA95]. After a communication failure it is possible to synchronize the replicas. Merg-
ing of alternatives are done under user control, possibly later, in the same way whether
the alternatives have been created in a distributed setting or not.

Awareness The version graph is shared by all users editing or viewing the same docu-
ment. All creations of new versions of the document is thus immediately visible for all
users (who have chosen not to close the version window). The granularity of presented

Figure 2 Local version graph of a single information unit in a hierarchical document.
The unit is not present in some versions (1,2,4) of the document, equal in some versions
(3=5 and 6=7 respectively) and different when comparing others (e.g. 3 and 6, 5 and 7).

1 2 4 5 7

63



7

changes is flexible, so a user can choose to be made aware of single changes as they are
made. In [MM93] we have described how the model covers synchronization models from
asynchronous to synchronous through the ‘Active diffs’ technique. This flexible aware-
ness support can be provided also in a distributed situation.

3.1 Discussion

Hierarchical documents are intended to be used for representing relatively tightly depen-
dent information. This might be programs, such as a class or a module with its operations,
or a paper with sections and paragraphs. A document can include related information of
different type, such as program code, documentation, users’ manuals, specifications, test
cases, execution results and (as will be discussed further in the next section) bindings to
other documents. The explicit representation of the version graph used for simple and fast
interaction to view and compare versions helps the user to create a good understanding
of the history of a document.

Integrated support for hierarchical representation offers a solution for the document
size conflict. On one hand the Information units in a COOP/Orm document can be made
relatively small in order to enable users to share small pieces of information and do work
in parallel. On the other hand, the size of a COOP/Orm document can be chosen to be
relatively large to collect logically related information in one unit.

COOP/Orm also offers a solution to the combination explosion problem since many
related changes to the information units can be included in one version update of a doc-
ument. If each information unit was represented as a single file with a version history of
its own there would be a large number of combinations [Tic88], most of which would be
inconsistent and uninteresting.

The versions of the document created in our model represent meaningful combina-
tions of versions of the included information units, and the problem with many meaning-
less configurations is thus avoided. The scheme is not a restriction on the developer since
it is always possible to create new variants of a document to include particular combina-
tions of versions of the included information units.

The version control mechanism will register all versions of a document, also so
called ’minor-revisions’, short lived versions during development of very little interest.
In order to counter for a situation where the version graph grows beyond reasonable lim-
its we are considering different mechanisms to collapse (and even remove) in particular
long sequences of uninteresting versions of a document.

The underlying representation is using a backwards-delta technique and sharing of
information for nodes that have not changed between versions [MAM93]. The use of
character based, change oriented, deltas, rather than line based, might turn out to be more
compact, in particular for the many small deltas we have to store. Our model also enables
sharing of information between alternatives, which might be a significant improvement
if there are many alternatives with small differences. There is no reason to believe that
this representation form will be significantly larger than standard techniques used by
SCCS and RCS, but it might turn out to be more compact.

The explicit shared version graph offers a powerful mechanism for awareness. It is
possible to see in real time what other versions are created, and what the changes are. To-
gether with the active diff mechanism it seems to offer mechanisms that covers the modes
of interaction used in Software Engineering: mainly asynchronous, but in certain situa-
tions, such as initial design and debugging, also synchronous interaction.

The hierarchical document representation offers a mechanism for sharing docu-
ments between developers, but from a systems building point of view a document is one
unit. In order to share a document between several systems we need also a binding mech-



8

anism to create configurations of documents. How to introduce such a mechanism with
the document model outlined in this chapter is the main contribution of this paper, pre-
sented in the next chapter.

4 Configurations of hierarchical documents
A system can in principle be built as a single hierarchical document, but this would not
allow use of a sub-component, such as a library, in several systems. In order to share
components or sub-systems between systems, systems are built as a number of compo-
nents that are then combined to make up complete systems. To provide mechanisms for
this situation, a document can in our model contain bindings to other documents. Such a
binding is targeted to a specific version of a document. We use the terminology that a
document canimport another document through abinding. As with a single hierarchical
document, given a specific version of a configuration, it is always determined exactly
which version of each imported document is included in the configuration. In figure 3 we
can see the content of an ‘Imports’ window showing all other documents imported. For
each document its name and version is shown. This view is called theglobal version
graph, since it presents the versions of all documents the current document depends on.

A document can be included in a configuration through several bindings in the same
or different configurations. A specific version of a configuration is always importing a
specific version of the imported documents. A document that is included into a system
through different paths might very well be included in more than one version at the same
time.

Documents that contain no external bindings can be seen as a special case, constitut-
ing leaf nodes in the DAG of imported documents. Documents which are not further im-
ported are calledsystems, while the intermediate case, documents with both incoming
and outgoing bindings, are calledsub-systems. Apart from the existence of bindings there
is no difference between these kinds of documents.

Updating bindings

Changes to external bindings (as well as changes to other units) in a hierarchical docu-
ment will propagate a version change to the top of the document, establishing a new ver-

?

? Imports

?

?

?

3 3

42

42

Figure 3 Imported documents, directly and indirectly, in version ‘2’ of a document.
We can see that the document ‘Text’ is imported in two different ways. The marking,

‘?’, indicates that there is a more modern version of the imported document available.

Text

Hash

Command SymbolTable

Hash-
Entity



9

sion of the document, as described earlier, but not penetrate through to the, possibly,
large number of documents thatimport the document. Changing a binding to import a
different, often newer, version of a document is something the developer frequently
wants to be in control of. This operation is therefore an active choice (although supported
by the user interface) rather than an automatic feature. Rebinding an import to another
version of the imported document can be done by editing the external binding, or by ed-
iting in the global version graph. In both cases, updating an external binding always
means creating a new version of the importing document. In figure 4 we show two steps
in re-binding the version of an indirectly imported document. The ‘open lid’ in the ver-
sion graph indicates a version under construction. We have decided to use the updated
version, ‘4’ of the document ‘Text’ and as a side-effect we have created new versions
also of the intermediate documents. In the left hand situation the graph shows the differ-
ence in bindings between two versions of the configuration(2 and 3). The marker ‘?’
marks information units where a newer version of the document is available and markers
‘!’ indicate changed units. Version ranges (like ‘3-4’) are used to show the versions
bound to in changed units. Double drawn icons indicate that multiple versions of the doc-
ument are considered in the current situation.

In the right hand picture of figure 4 the new version, 3, of the configuration is ready
and the graph shows the resulting bindings of the document. Note that the developer, in
this case, chose to use two different versions of the document ‘Text’ and the availability
of the more modern version is still signaled by the ‘?’ markers which is propagated up-
wards in the graph.

4.1 Discussion

The COOP/Orm document model extends well to supporting configurations of docu-
ments. The requirement to always be able to reconstruct versions of documents in a con-

?

? Imports

?

3 3-4

42-3

4-52

!

!

?

? Imports

?

3 4

43

52

Figure 4 A comparison of versions of a configuration being edited (to the left) and the
final result, showing import of a document in multiple versions.

Text

Hash

Command SymbolTable

Hash-
Entity

Text

Hash

Command SymbolTable

Hash-
Entity



10

figuration is fulfilled since bindings are to explicit versions of imported documents. In
the terminology of [Tic88] our configurations are always ’baselines’ and ’generic con-
figurations’ are ruled out by the requirement. Generic configurations are, despite the
drawback not to fulfill the reconstruction requirement, motivated by the need to, in a flex-
ible way, express selection of versions (like the last stable version) during development.
There is also a need to select among the few meaningful combinations of the enormous
number of possible configurations generated by combinatorics. The combinatorical ex-
plosion is created by the large number of individually versioned documents. Our ap-
proach is to try to avoid rather than solve this problem.

In our model information units are grouped together into documents with one and
the same version history. There is thus typically fewer (but larger) documents when our
model is used. Furthermore, since there is support for grouping of related changes, there
will be much fewer versions of this document than the combination of versions of all in-
cluded information units. These versions represent meaningful combinations of versions
since they are created by the developer of the document. These two effects thus greatly
reduce the number of combinations that need to be considered.

Attempting to further reduce the number of versions of a document that has to be
considered by a developer who imports the document, one can envision techniques based
on status of the versions, such as ’released’, ’tested’ etc. A filtering mechanism could
then be used to show only a subset of the existing versions to the users importing the doc-
ument. Seen from the developers viewpoint, this technique would solve the problem in a
similar way as generic configurations, although the binding is done earlier.

A potential problem with our model is the ’snowball’ effect that can be triggered
when shifting to use a new version of a basic document, used (directly or indirectly) by
many documents including the final system. Each of these needs to be extended with a
new version in order to make the change take full effect. The binding update mechanism
described above, has been designed to make it simple to create these new versions of a
large number of documents. The filtering mechanism, outlined above, would help further
in automating such regular updates.

We conclude that our model cover the needs addressed by both baselines and generic
configurations. Baselines are trivially supported, while an automated re-binding mecha-
nism covers the selection problem. The difference is that the selection is triggered explic-
itly in our model and as a consequence the requirement to be able to reconstruct systems
is fulfilled.

5 Evaluation
The model presented in this paper will be evaluated first of all for the expressiveness and
ease of use of the functionality it offers. The efficient implementation of the underlying
representation of hierarchical documents has already been reported on in [MAM93]. The
model meets the requirements listed above and thus also the requirements in [Kat90] as
we interpret them in these circumstances. For further evaluation of the expressiveness we
will use the list of questions relevant for software configuration management presented
in [Tic88]:

Identification: Identifying the individual components and configurations is a prerequi-
site for controlling their evolution. Questions: This program worked yesterday - What
happened. I can’t reproduce the error in this configuration. I fixed this problem long ago
- Why did it reappear? The on-line documentation doesn’t match the program. Do we
have the latest version?



11

Our model is storing all information in a versioned form and clearly supports the de-
mand for identification. A system can always be recreated in any version. Our model also
supports interactive presentation of differences between comparable versions and thus
helps not only in identifying versions, but also differences both regarding content and
structure of documents and configurations. The model supports integrated storage of
code and documentation.

Change Tracking: Change tracking keeps a record of what was done to which compo-
nent for what reason, at what time and by whom. Questions: Has this problem been
fixed? Which bug fixes went into this copy? This seems like an obvious change - Was it
tried before? Who is responsible for this modification? Were these independent changes
merged?

Our model immediately answers the questions related to what was done to which
components at what time and by whom. Remains to support questions on for what reason.
Here we suggest a technique where bug reports are stored as individual documents and
used to store bindings to related documents needing update. This is a technique similar
to ’projects’ in other systems, directly supported by our model. This technique gives a
partial answer to the questions, the difficult one is - ’What bug fixes went into this copy’.
It could be envisioned to be solved with a search mechanism over such Bug report doc-
uments and their external bindings.

Version Selection and Baselining:Selecting the right versions of components and con-
figurations for testing and baselining can be difficult. Machine support for version
selection helps with composing consistent configurations. Questions: How do I config-
ure a test system that contains my temporary fixes to the last baseline, and the released
fixes of all other components? Given a list of fixes and enhancements, how do I config-
ure a system that incorporates them? This enhancement won’t be ready until the next
release - How do I configure it out of the baseline? How exactly does this version differ
from the baseline?

Our model offers explicit choice of modules and versions to include in a configura-
tion (=baseline). Creating versions of configurations as these examples are done interac-
tively and under explicit control by the user. The system can also show differences
between versions of configurations, to answer the last question.

Our model is designed to support tracing of the exact version of all components that
go into any configuration. Selection of configurations is explicit and manual in our sys-
tem, but chosen from a much smaller set of meaningful combinations than in a traditional
situation. We have also shown how the model could support an automatic selection
mechanism.

Software Manufacture: Putting together a configuration requires numerous steps such
as pre-and post-processing, compiling, linking, formatting and regression testing. SCM
systems must automate that process and at the same time should be open for adding new
processing programs. To reduce redundant work, they must manage a cache of recently
generated components. Questions: I just fixed that - Was something not recompiled?
How much recompilation will this change cost? Did we deliver an up-to-date binary
version to the customer? I wonder whether we applied the processing steps in the right
order. How exactly was this configuration produced? Were all regression tests per-
formed on this version?

These are issues that we regard as the responsibility of the software development en-
vironment. The environment we are working with, and where the model we have present-



12

ed is used, is highly integrated and spares the user the burden of controlling the
“manufacturing process” itself. These tasks are done automatically and incrementally as
needed.

Managing Simultaneous Update:Simultaneous update of the same component by sev-
eral programmers cannot always be prevented. The configuration management system
must note such situations and supply tools for merging competing changes later. In so
doing helps prevent problems like the following: Why did my change to this module dis-
appear? What happened to my unfinished modules while I was out of town? How do I
merge these changes into my version? Do our changes conflict?

Our version control model is designed to support teams of programmers doing si-
multaneous updates. The model is that each member is free to create new versions and
the system provides support for merging alternatives together using a operation-based
diffing approach. Our model in fact goes beyond the requirements here in that it also sup-
ports a synchronous editing mode where programmers can see each others work in
progress [MM93].

We thus conclude that the functionality needed to provide support for configuration man-
agement is covered in our model. We go beyond these requirements when it comes to
support for teams of programmers.

5.1 Comparison with other systems

CVS [Wat, Ced93] is a system built on top of RCS and provides a centralrepository
which containsmodules, groups of files, of for instance program sources. The files are
hierarchically structured (Unix files and directories). Every file is version controlled and
branches as well as merge can be done on a single file.

The idea of module is matched by our hierarchical documents. CVS only uses mod-
ules as the configuration structure and not for version control while we use the structure
for change propagation, compact storage and advanced presentation of differences. In
CVS the revision numbers live a life of their own and it is optionaltags, symbolic names
attached to a certain revision of a file, that support versions of configurations. Thus, even
if the structure of the repository is hierarchical the selection of files creating a configura-
tion is not hierarchical. Our change propagation mechanism also enables diffs on config-
urations, which is not possible in CVS.

Furthermore, our approach supports a finer granularity of version control than CVS
does. Our information units are intended for smaller pieces of information than what is
usually stored in a single file. Also our model encourages creation of alternatives for de-
velopment work, the result of which is then merged into the main development line
(matched with thecommit command in CVS). Minor revisions are thus saved in the de-
veloper’s own alternative enabling a more detailed history log. In this way we support
fine grained versions for each developer, without cluttering the main development line
with too many versions.

Our integrated architecture also gives a more supportive user interface with graphi-
cal presentation of the version graph, and visibility of operation-based diffs (rather than
whole source lines).

Teamware is a system designed for use in a distributed setting, supporting a work-
space metaphor. Configurations, i.e. directories with files, can be manipulated and cop-
ied for independent development and later synchronization. Parallel development is thus
supported in the copy-merge style. Merging of workspace copies is supported in that



13

conflicts are detected, i.e. updates that have taken place after the check-out, and have to
be merged into the local workspace (and presumably tested) before an update can take
place. If exactly the same file has been updated in both places, a three-way merge tool is
used to support textual merge of the changes. The effect is that development of a work-
space is a linear sequence. Alternative development lines are handled through use of
multiple workspaces. Teamware is built on top of SCCS and a workspace includes cop-
ies of related SCCS files, which thus are copied and later merged. This enables move-
ment of entire workspaces between file-systems and thus distribution, but with no
awareness.

The COOP/Orm Multi-Server architecture enables replication and wide distribution,
but also synchronization and awareness as long as there is network connection. Synchro-
nization of SCCS files matches synchronization of replicated Orm documents after a net-
work failure. The workspace model supported by Teamware matches Orm documents
with one alternative for each Workspace. Seen this way Teamware insists on a particular
merging order between alternatives that could be used also in COOP/Orm, but is not in-
sisted on. In addition Teamware works with the latest version in each workspace, while
in COOP/Orm the full development history is always available.

Continuus/CM is a process-driven, client-server system for change and configuration
management. The Continuus/CM object management system is built on an inheritance-
based type system, with several pre-defined object types. Thedirectory and theproject
type represent grouping and configuration respectively, and can be mapped to the
COOP/Orm document and configuration. There are, however, some differences. A new
version of adirectory object is only necessary if the set of objects changes (e.g. a new
file is added to the directory). I.e., new versions of a file already in a directory can be
created within the same directory version. This is in contrast to documents in COOP/
Orm, where a change to a leaf unit propagates to be considered a change of the docu-
ment. The drawback of Continuus solution, as we see it, is that the directory abstraction
can not be used for selection of configurations. Instead of selecting a specific version of
a directory, every object must be treated individually, which increases the complexity
also when the configuration is later viewed. Both systems can compare versions of
information units. However, the operation-based deltas used in COOP/Orm and the inte-
gration of editor and storage model gives a more fine-grained diff. Additionally, ver-
sions of both COOP/Orm documents and configurations can be compared and merged,
highlighting the differences. This is, to our knowledge, not possible with directories and
projects.

ClearCase is a version-driven configuration management system. It versions file-sys-
tem objects, including files, directories, and links, of which directories are treated simi-
larly to directories in Continuus/CM discussed above. Configuration control is
supported throughviews which is a set of directories and files selected by a set of user-
defined rules. Like COOP/Orm, ClearCase makes it easy to create a variant of a file and
to reintegrate the work done into other lines of development. The merge is similar to
ours, using the ‘common ancestor’ to find the changes between the common ancestor
and each of the versions being merged. Both systems find the parts of the file changed in
both branches and highlights them as conflicts. However, when ClearCase merges a file
COOP/Orm merges a document, including merge of the document structure at the same
time. Our merge is also more fine-grained because we use the operation-based deltas



14

given by the editor instead of comparing files, calculating the differences. This, we
think, is the drawback of the transparency approach to integration taken in ClearCase.
COOP/Orm also has more comprehensive group awareness, supporting the spectrum
from shared version graph to active diffs enabling synchronous work.

CoVer [HH93,Web92] is a hypermedia version server implemented on top of the
HyperBase hypermedia engine [SS90]. Versioned objects are represented bymulti-state
objects (mobs), which is a composite holding references to all states of the versioned
object it represents. CoVer does not impose a fixed structure on the versions of a ver-
sioned object and version selection is based on viewing and browsing versions with
respect to values on their attributes or relationships to other objects. General queries are
used to find objects of a particular version. If a query returns several versions, they are
considered asalternatives with respect to the equality characteristic given by the query.

The free format of version control in CoVer is in contrast to our approach where the
evolution history is explicit. Versions represents the evolution and alternatives parallel
development, i.e. a directed acyclic graph (DAG) structure.

In CoVer aTaskmaintains the (versions of) various objects used and created in the
context of performing a job. A Task is implemented as a composite holding references to
the objects determining its current state. This approach resembles the AND/OR graphs
model presented in [Tic88], where amob matches an OR-node andTask composites are
AND-nodes. Our configuration mechanism can be used to form a collection for the pur-
pose of performing a job, thus recording and preserving the information on which docu-
ments needed updates (and exactly which updates).

6 Implementation

6.1 Operations in the model

In this section we will summarize the functionality of the presented version model in
form of the operations which the model supports. The representation of a hierarchical
document has three components: revision history, user data, and external bindings.

Revision history
The revision history contains information to represent each revision of the document and
their relations. The information is sufficient to create the version graph presented in the
user interface. When a new version is created, this information is extended. The informa-
tion format is a sequence of version pairs representing each arc in the graph.
Operations:

• Read version graph - return information describing the revision history of the doc-
ument.

• Set focus - change currently viewed version of the document.

• Set compare - change version to which the viewed version is compared.

• Create version - create a new version succeeding from an arbitrary selected (but
established) version. If the originating version already has succeeding versions a
variant is automatically created. This is an operation that involves a long transac-
tion, it is terminated explicitly and the version is ‘frozen’.

• Freeze version - make the version immutable.



15

• Merge versions - merge two versions creating a third.

User data
The user data constitutes the content of an information unit in one of its versions. The
storage format uses backward operation oriented deltas and extensive sharing of common
subparts [MAM93].
Operations:

• Read a unit - get the unit information in the version currently in focus. It returns
application data for leaf units, and configuration information for branch units.

• Read a unit delta - get the delta information for a unit representing the changes
between the focus and compare versions.

• Write a unit - update the unit information of a unit in the version in focus, and at
the same time update the delta to its originating version(s).

• Add a unit - the document configuration is expanded with one new unit. Its type
can be a composite unit or leaf unit (e.g. text or external binding).

• Delete a unit - delete a unit in the configuration.

The operations, Write, Add and Delete a unit can only be called when a new version is
in creation (between the Create and Freeze operations). Add and Delete a unit are actu-
ally edit operations on the containing composite unit. The actual content of an informa-
tion unit depends on the type of the unit. Here we have mentioned the fundamental node
types composite and external bindings (as of below), and nodes of type text. The model
can, however, handle user data of any type.

External bindings
The external bindings contain the path and version of all external documents this docu-
ment depends on, or imports. This information is stored and version controlled as part of
user data, but considered a special component due to its importance for configuration
management.
Operations:

• Read external bindings - return bindings to external document (including ver-
sion).

• Read binding deltas - return changes to the bindings between the focus and com-
pare versions.

• Create external binding - add an import of a specific version of a document.

• Delete external binding - remove an import of a document.

The operations Create and Delete uses the operation Write unit and can thus only be
called during creation of a new version.

6.2 Implementation status

The implementation of the model is carried out as part of a software development system
with the ambition to support teams of users working together on shared information. The
implementation is organized as a multiple server multiple client architecture. In the first
version it supports a semi-structured representation of programs and text. The hierarchi-
cal document supports structuring a document as a tree of information units, but each unit



16

can currently only contain unstructured text. A text editor with version control mecha-
nisms provides the means to browse and navigate versioned text.

6.3 Future work

Currently the version graph interface shows all existing versions of a document. This
clearly does not scale up to handling systems with a long and complex history. We are
therefore working with methods to suppress some of the information in the graph (hiding
details like long sequences and older parts) although the user can always ‘open’ these
parts to see all the details as he wish. Similarly, the global version graph shows all in-
cluded document in a configuration. This does not scale up to large systems with many
components. Here we are considering to suppress deeply nested graphs (again allowing
the user to explore these parts if he wishes), but still reporting the status of these parts
(propagating the ‘?’ markers). Operations are also needed to perform related rebinding
operations over a collection of modules in one operation (like switching to use a new re-
lease of a popular module without touching all the importing modules one by one).

In future versions we will also provide a versioned editor for abstract syntax trees
for integration of the fine-grained version mechanism in the Orm programming environ-
ment.

The protocol for server-server communication has been designed but is not yet im-
plemented.

Finally we see the system as an interesting environment for experimenting with pro-
cess support. The explicit version mechanism is initially motivated for enabling aware-
ness in a cooperative editing environment and a process support system is by nature a
CSCW system. We also expect that interactive language development support mecha-
nisms developed in the Mjølner/Orm environment (and available in COOP/Orm when
the abstract syntax editor is available) will be useful to develop support for specifying
processes.

7 Conclusions
We have presented an integrated model for fine-grained version control and configura-
tion management. The design is exploring a two level approach. A restricted grouping
mechanism is supported inside tree structured, hierarchical documents, offering automat-
ic version propagation. Between documents a general binding mechanism is offered with
explicit control over version selection of imported documents.

Supporting hierarchical documents have several benefits. At the same time it offers
a configuration mechanism for keeping related information together in a tree structure, a
fine-grained revision control mechanism, and automatic change propagation. A direct
manipulation user interface allows the user to browse a document both according to its
structure and its versions presented in a graph. Differences between versions of a docu-
ment can be interactively constructed and presented both regarding changes to structure
and contents.

Through external bindings hierarchical documents can be related in DAG structures,
a document can thus be used in many places. In a single hierarchical document, change
propagation is automatically generating new versions of containing configurations in the
tree structure. Between documents the change of bindings to different versions is explic-
itly managed by the user, but guided with a graphical user interface. Bindings are always
targeted to a particular version of an external document and the bindings are stored as
part of the versioned information of a document. As a result it is always possible to rec-
reate all the documents included in a configuration in their correct versions.



17

The model is initially intended for supporting development in integrated environ-
ments, but is also useful in other settings. The model has been developed to support
groups of developers sharing information and is offering support for both synchronous
and asynchronous modes of editing, parallel development and strong support for merging
of variants. The details of these aspects are covered in other papers [MM93, MAM93,
Ask94, Mag95].

Acknowledgments

The authors wants to thank all the members of the software development research group
at Dept. of Computer Science, Lund Institute of Technology, for stimulating discussions
which have contributed substantially to the work presented in this paper. In particular,
we want to thank Torsten Olsson who is working on the structured document editor and
Görel Hedin for constructive comments on earlier drafts of this paper.

The work presented in this paper was supported in part by NUTEK, the Swedish Na-
tional Board for Industrial and Technical Development.

References

[Ask94] Ulf Asklund. Identifying Conflicts During Structural Merge. In Magnusson
et al. MHM94.

[Cla95] Dave St Clair: Continuus/CM vs. ClearCase, URL: http://sunsite.icm.edu.pl/
sunworldonline/swol-07-1995/swol-07-cm.html, SunWorld Online, 1995.

[Ced93] Per Cederqvist. Version Management with CVS. Available from in-
fo@signum.se, 1993.

[Gus90] A. Gustavsson.Software Configuration Management in an Integrated Envi-
ronment. Licentiate thesis, Lund University, Dept. of Computer Science, Lund, Sweden,
1990.

[HH93] Anja Haake and Jörg M. Haake. Take CoVer: Exploiting Version Support in
Cooperative Systems. InProceedings of INTERCHI’93, ACM Press, Amsterdam, The
Netherlands, April 24-29 1993. Addison Wesley.

[HM88] G. Hedin and B. Magnusson. The Mjølner environment: Direct interaction
with abstractions. In S. Gjessing and K. Nygaard, editors,Proceedings of the 2nd Euro-
pean Conference on Object-Oriented Programming (ECOOP’88), volume 322 ofLec-
ture Notes in Computer Science, pages 41–54, Oslo, August 1988. Springer-Verlag.

[Kat90] Randy H. Katz. Toward a Unified Framework for Version Modeling in Engi-
neering Databases.ACM Computing Surveys, 22(4), December 1990.

[KLMM93] J.L. Knudsen, M. Löfgren, O.L. Madsen, and B. Magnusson, editors.Ob-
ject-Oriented Environments - The Mjølner Approach. Prentice-Hall, 1993.

[LvO92] Ernst Lippe and Norbert van Oosterom. Operation-based Merging. In
H. Weber, editor,SIGSOFT’92 Proceedings, Tyson’s Corner, Va., December 1992.
ACM. SIGSOFT Software Engineering Notes, 17(5).

[MAM93] Boris Magnusson, Ulf Asklund, and Sten Minör. Fine-Grained Revision
Control for Collaborative Software Development. InProceedings of ACM SIGSOFT’93
- Symposium on the Foundations of Software Engineering, Los Angeles, California, 7-10
December 1993.



18

[MHM94] Boris Magnusson, Görel Hedin, and Sten Minör, editors.Proceedings of the
Nordic Workshop on Programming Environment Research, Lund University of Technol-
ogy. LU-CS-TR:94-127, Lund, January 1-3 1994.

[MM93] Sten Minör and Boris Magnusson. A Model for Semi-(a)Synchronous Collab-
orative Editing. InProceedings of the Third European Conference on Computer Sup-
ported Cooperative Work, Milano, Italy, 1993. Kluwer Academic Publishers.

[MA95] Boris Magnusson and Ulf Asklund: Collaborative Editing - Distributed and
replication of shared versioned objects. Presented at the Workshop on Mobility and Rep-
lication, held with ECOOP 95, Aarhus, August 1995. Available as: LU-CS-TR:96-162,
Dept. of Computer Science, Lund, Sweden.

[Mag95] Boris Magnusson: Fine-Grained Version Control in COOP/Orm, Presented at
the Workshop on Version Control in CSCW, held with ECSCW’95, Stockholm, Sept.
1995. Available as: LU-CS-TR:96-163, Dept. of Computer Science, Lund, Sweden.

[MHM +90] Boris Magnusson, Görel Hedin, Sten Minör, et al. An Overview of the
Mjølner Orm Environment. In J. Bezivin et al., editors,Proceedings of the 2nd Interna-
tional Conference TOOLS (Technology of Object-Oriented Languages and Systems),
Paris, June 1990. Angkor.

[Ols94] Torsten Olsson. Group Awareness Using Fine-Grained Revision Control. In
Magnusson et al. MHM94.

[RBI95] W. Rigg, C. Burrows and P. Ingram: Ovum Evaluates: Configuration Man-
agement Tools, Ovum Limited, London, 1995.

[Roe75] M. J. Roekind. The source code control system.IEEE Transactions on Soft-
ware Engineering, 1(4):364–370, December 1975.

[SCC] SCCS - Source Code Control System. UNIX System V programmer’s Guide.
Prentice-Hall Inc. pp 59-700.

[SS90] Helge Schütt and N. Streitz. HyperBase: A Hypermedia Engine Based on a Re-
lational Database Management System. In A. Rizk, N. Streitz, and J. André, editors,Pro-
ceedings of the European Conference on Hypertext (ECHT’90): Hypertext: Concepts,
Systems, and Applications, Cambridge Series on Electronic Publishing, pages 95–108,
Versailles, France, November 27-30 1990.

[Team] TeamWare user’s guides, Sun Microsystem, 1994.

[Tic85] Walter F. Tichy. RCS - a system for revision control.Software Practice and
Experience, 15(7):634–637, July 1985.

[Tic88] Walter F. Tichy. Tools for software configuration management. InProceed-
ings from International Workshop on Software Version and Configuration Control,
Grassau, Germany, February 1988.

[TJ88] Dave Thomas and Kent Johnson. Orwell: A Configuration Management Sys-
tem For Team Programming. In N. Meyrowitz, editor,Proceedings of OOPSLA’88, San
Diego, Ca., September 25-30 1988. ACM. SIGPLAN Notices, 23(11).

[Wat] Gray Watson. CVS Tutorial. Available from gray.watson@antaire.com.

[Web92] Anja Weber. CoVer: A Contextual Version Server for Hypertext Applica-
tions. InProceedings of ECHT’92, November 30 - December 4 1992.


