In Proceedings of the 8th International Symposium on Sys-
tem Configuration Management (SCM-8), Brussels, July 20-
21, 1998. LNCS-1439, pp 107-126, Springer-Verlag.

Product Configuration Using Object Oriented Grammars

Gorel Hedir, Lennart Ohlssdh and John McKenria

1 Dept of Computer Science, Lund University, Swedgorel.Hedin@dna.lth.se
2 Utilia Consult, Malmo, Swedetennart@utilia.se
3 Alfa Laval Thermal AB, Lund, Swededjohn.mckenna@alfalaval.com

Abstract. This paper presents a technique for product configuration modelling
based on object-orientation and attribute grammars. The technique allows effi-
cient interactive configurator tools to be generated for specified product families.
Additional benefits include a high degree of checkability, early validation, read-
ability, and reusability. The technique is particularly aimed at mass-customiza-
tion products and an example concerning the mechanical configuration of plate
heat exchangers is used to demonstrate its benefits.

1 Introduction

Complex products are often designed as product families where each customized prod-
uct is a configuration of interrelated componentspiduct configuratoris a tool

which supports the product configuration process so that all the design and configura-
tion rules which are expressed in a product configuration model are guaranteed to be
satisfied. The configurator simplifies the manufacturing process by assuring that all
orders received are possible to build. Interactive configurator tools can support quick
and flexible customization by giving immediate and accurate information about the
available combinations of options.

Ideally, the product configuration model should be written in a form which captures
the design intent in a direct way, allowing the model to be easily read and changed by
the domain engineers themselves, without involving expert programmers. It should be
possible to generate computer-aided configuration tools automatically from the model.
In this scenario, the software cost for a product change can be easily predicted, and
changes can be introduced within days.

As a step towards this ideal scenario, we have developed OPG (Object-Oriented
Product Grammar- a configuration model description language which is based on
object-oriented programming and attribute grammars. Object-orientation provides
suitable modelling support and attribute grammars forms a suitable base for expressing
configuration rules. Attribute grammars furthermore provide a well-established and
efficient technology for the generation of interactive tools [16, 10].

The OPG work has grown out of an effort to formally describe the mechanical con-
figuration of plate heat exchangers in a cooperation project between Lund University
and Alfa Laval Thermal, the world leading supplier of plate and spiral heat exchangers.
Alfa Laval Thermal has developed an interactive configuration tool called CAS 2000
(Computer Aided Sales) [1] which is used at market companies around the world. The
tool allows customized design of plate heat exchangers. The user can interactively



enter requirements on e.g. pressures and temperatures, and select a number of different
options according to engineering rules. The tool automatically presents valid alterna-
tives for selection, and also checks that the designed plate heat exchanger is internally
consistent, i.e., that it is possible to build. When a design is complete, the tool can pre-
pare quotations for customers and send electronic orders to the appropriate manufac-
turing unit.

The immediate goal of the OPG work is to be able to replace the hand implemented
configurator in CAS 2000 with a configurator generated automatically from declara-
tive descriptions, thereby allowing the tool to be updated quickly to incorporate new
product developments, eliminating the need for programming.

The rest of this paper is organized as follows. Section 2 gives an overview of our
running example: plate heat exchangers, and the configuration problems involved for
this product. Section 3 explains the architecture we propose for product configuration,
and section 4 discusses key elements in the OPG formalism. A discussion is given in
section 5 where we also give an outlook on future work. Section 6 discusses related
work and section 7 concludes the paper.

2 Plate Heat Exchangers

A heat exchanger is a device for heating or cooling a fluid by exchanging heat with
another fluid. Examples of use are in chemical processing, dairy processing, air condi-
tioning, etc. A plate heat exchanger (PHE) consists of a pack of metal plates and the
fluids are directed into alternate channels between the plates so that a large area for
heat exchange is obtained without letting the fluids mix. Fig. 1 shows the basic struc-
ture of a PHE.

Our example concerns threechanical configuratioof the PHE, i.e. how a plate
package is configured with frame plate, pressure plate, carrying bar, support column,
tightening bolts, etc. Each frame plate and pressure plate has four holes which can be
used in different ways. Four of the holes are used for connecting the incoming and out-

Carrying bar

Pressure plate
Support column
Frame plate

Tightening bolts

Connection hole

Guiding bar
Plate package

Fig. 1. Mechanical configuration of plate heat exchanger



going two fluids. Other holes can be covered with inspection covers (to allow inspec-
tion of a fluid). Some holes will not be in contact with any fluid, because the plate
package does not have a hole in the corresponding position. In that case, the hole is
simply covered by a blind cover. Examples of configuration options include how to
place the connections and covers, how to select components of matching sizes and of
appropriate material so that adjacent materials do not corrode and so that the compo-
nents will stand the pressure requirements. When different configurations are possible,
the cheapest one is usually preferable.

What is interesting about this example is that PHES as such are not mass produced.
Rather, the individual components, such as plates, carrying bars, support columns, etc.,
come in many different variants (each of which is mass produced), but each individual
sold PHE usually represents a unique configuration of components. The components
come in many different sizes and material in order to fit different plate package config-
urations and to cater for the customer requirements on for example pressure and corro-
sion properties.

Alfa Laval Thermal has for more than two decades applied leading edge production
principles such as process oriented organization and build-to-order manufacturing, or
what is now known as mass-customization. The product model used is known as a
building block system. From a manufacturing perspective a block is a named assembly
with a fixed set of components, i.e. it identifies a particular bill-of-material. For exam-
ple, a given “tightening bolts block” identifies a certain set of actual nuts and bolts.
From a sales perspective, however, a block appears as a component in the sense that
blocks are the atomic elements which can be configured into a customer specific prod-
uct.

3 The OPG Configuration Model

Taking a general perspective, we can view a product configuration as a set of con-
nectedcomponentseach with a number gbroperties A number ofrules over the
components and properties define the validity of the configuratiomald product
configurationis a configuration where all rules are satisfied. This general view is com-
mon in product configuration, see e.g. [19, 17]. An interactive product configurator
tool, like CAS 2000 discussed above, allows the user to interactively edit a product
configuration by adding, removing, or changing components. The tool constantly
checks if the current configuration is valid and also helps the user to select components
which will result in a valid configuration.

OPG (Object-Oriented Product Grammar) is a formal product configuration model
based on object-orientation and attribute grammars. This model allows specification on
three levels:

Type level: Specification of product types and their principle components, e.g. plate
heat exchangers and their principle components such as frame plate, pressure plate,
carrying bar, etc.

Prototype level: Specification of the mass-produced components which can be used in
product configuration. E.g., specification of different mass-produced frame plates.



Configuration level: Specification of individual customized configurations. E.g., a
milk cooler configured from instances of specific mass-produced components.

Our work aims at the possibility to automatically generate product-specific config-
urator tools like CAS 2000 by giving the product type specification as input to a tool
generator and using the description of the mass-produced components as a database of
the configurator tool. Fig. 2 outlines this approach. The main reason to support the
generation of the configurator tool is to be able to quickly incorporate changes to the
configurator as the product type evolves. In addition, it is important to support a high
degree of consistency checking at all three levels, and that the specifications are highly
readable and reusable to support evolution.

3.1 The Component Hierarchy

As mentioned, a product configuration is a set of connected components with proper-
ties and rules. In OPG, the components are connected in a hierarchy. In section 5 we
will discuss the possibilities of generalizing this to a graph. A very simplified compo-
nent hierarchy for a plate heat exchanger is shown in Fig. 3. The top component repre-
sents the complete PHE consisting of a PlatePackage and a Frame. The Frame in turn
consists of a FramePlate, a PressurePlate, and TighteningBolts. This PHE does not
have any CarryingBar or SupportColumn - these components are in general optional,
but may be required in specific configurations. All four Holes on the FramePlate have
contact with fluid (FluidContact) and are fitted with Linings. On the PressurePlate,
three of the Holes are not in contact with fluid (NoFluidContact) and are covered with
BlindCovers, whereas the fourth hole is in contact with fluid (FluidContact) and is fit-
ted with a Lining and an InspectionCover. The PlatePackage has, in principle, an inter-
nal configuration of different kinds of plates, but since we are dealing with mechanical
configuration only, we simply view it as a black box here.

Some of the components, e.g. FramePlate, correspond to physical mass-produced
components, and we call thegmtotypical component§hese components will typi-
cally have a bill-of-material associated with them. Other components do not have a
physical correspondence and are catiedfiguration component3hese components
may have the role of grouping prototypical components, e.g. Frame, indicating a con-

input
type level | product type @

prototype | mass-produced input generate
level components
Yy
configuration product edit Confi interact
level configuration check onfigurator |~ >

sales engineer

Fig. 2. Specification levels and tools



figuration choice, e.g. FluidContact and NoFluidContact, or modelling customer
requirements, e.g. PHE.

A componentc on the path towards the root from a componens$ said to be
enclosing sinversely, thescomponent is said to besabcomponerdf c. For example,
the InspectionCover component in Fig. 3 has the following enclosing components:
FluidContact, Hole, PressurePlate, Frame, PHE.

3.2  The Specification Levels

Different aspects of the components, connections, properties, and rules, are specified at
different specification levels:

Type level: At this level component types are declared to model the types of compo-
nents which occur in configurations. The types are arranged in an inheritance hier-
archy of more general and more specific types (supertypes and subtypes). For each
component type, its connections (in the component hierarchy) are declared, indi-
cating mandatory and optional subcomponents, and arrays of subcomponents. Each
component type also contains declarations of properties and rules.

Prototype level: At this level prototypesi.e. instances of the prototypical component
types, are specified, to model the components that are mass produced. Each proto-
type is given explicit values for some or all of the connections and properties
declared in its type. Usually, all of the properties of a prototype are given values at
this level, but the possibility to leave out some of the property values allows the

PlatePackage

{ FramePlate } (PressurePIate) (TlghtenlngBoIts)
I Hole ) i Hole )

NoFluidContact }
FluidContact
InspectionCov
BlindCover
L|n|ng

(Configuration component) (Prototypical component)

FluidContact

Fig. 3. A component hierarchy



specification ofparameterizedomponents. For example, an insulation board may
be manufactured as piece goods, sold by the metre, and its prégregthmay be
given a value at the configuration level rather than at the prototype level.

Configuration level: At this level instances of configuration component types and
copies of prototypes are specified and the (remaining) connections and properties
are given values.

Fig. 4 shows an example of types, prototypes, and a partial configuration. The type
level specifies prototypical types like FramePlate, Hole, and Lining, and configuration
types like HoleContact and its two subtypes FluidContact and NoFluidContact. At the
prototype level, different prototypes for FramePlate (FP1, FP2, ...) and Lining (L1, L2,
...) are specified with differing property values. The example also shows the possibility
for prototypes to specify subcomponents, by specifying the different Holes for a
FramePlate. At the configuration level, instances of FluidContact are specified and
connected with copies of the FP1 and L1 prototypes.

The model is clearly heavily inspired by object-orientation. The component types
correspond to classes, the prototypes to prototype instances of the classes, and the
instances at the configuration level to instances of classes or copies of prototypes. The
object-oriented concept of prototypes and copies [13] has also been used in the area of
product configuration by e.g. Peltonen et al. [15]. Our use of prototypes is, however, a
direct application of the Prototype design pattern [7] rather than the use of prototype or
delegation-based programming as in [13, 15].

The model is also heavily inspired by attribute grammars. An attribute grammar is
an extension of a context-free grammar with attributes and semantic rules [12]. OPG
component types with its connections correspond to the nonterminals and productions
of the context-free part of the grammar, and the OPG properties and rules to the
attributes and semantic rules of the grammar. Some of our previous work [8] shows the
benefits of using object-oriented notations for attribute grammars, similar to how it is
done here. The configuration, i.e. the component hierarchy, corresponds to an attrib-
uted syntax tree, and the notion of valid product configuration is directly analogous to
the notion of a syntax tree with a valid attribution. Attribute grammars have proven
especially suitable for generating interactive language-based editors [16], and our ear-
lier work shows how to use object-oriented attribute grammar techniques to obtain
very efficient incremental evaluators [10]. Such evaluators can incrementally check the
attribution validity as the user edits the syntax tree, and the technique is directly appli-
cable to product configurator tools where an automated mechanism can check the
validity of a configuration as it is edited.

An important aspect of product configurator tools is that they should support the
user not only with checking validity, but with selecting valid components. To provide
attribute-grammar based support for this is an area for future work, but we have devel-
oped fragments of such techniques in the area of language-based editing, where e.g.
semantic editing can be used to provide a user with menus of visible and type-correct
identifiers [9].



Prototypical types

FramePlate

thickness: DistanceProperty

Configuration types
array [4] holes

subcomponent HoleContact

Hole

contact

diameter: DistanceProperty

inheritance

Lining

depth: DistanceProperty
diameter: DistanceProperty

optional
49'.—' FluidContact | |NoFIuidContacl |
lining

FP1

FramePlate Prototypes Lining Prototypes

FP2 / L1 \

thickness=20 mm

thickness=20 mm depth=20 mm

diameter=70 mm

depth=20 mm
diameter=100 mm

diameter=70 mm

diameter=100 m

thickness=20 mm

Partial configuration

depth=20 mm
diameter=70 mm

Fig. 4. Examples of types, prototypes, and instances in a partial configuration

4 Elements in OPG

4.1  Properties

All properties are declared at the type level, but may be given values at the prototype or
configuration level. There are three different modes for properties depending on how
they are given values: prototype properties, configuration properties, and derived prop-

erties.

Prototype properties. These are properties which are given values at the prototype
level. A prototype property typically reflects some physical characteristic of the com-



ponent, e.g. thickness or diameter as in the example above, or some imposed character-
istic such as a price.

Configuration properties. These are properties which are given values at the configu-
ration level, either by the user explicitly or computed by some external tool. A config-
uration property set by the user typically reflects a customer requirement. For example,
the Frame type has several configuration properties such as operatingPressure, upper-
Temperature, and lowerTemperature. External tools may also set configuration proper-
ties, allowing these tools to be interfaced to the main configurator. For example, an
external tool computing the plate package configuration could set the properties of the
PlatePackage component, e.g. length, plateMaterial, and gasketMaterial. These proper-
ties can then be used by the main configurator to check the validity of the mechanical
configuration.

Derived properties. The value of a derived property is computed by a rule, making
use of other property values or constants. Typically, derived properties are introduced
in order to make other rules simpler to express. We will see examples of this later.
There are two principle ways of defining the value of a derived property: by a rule in
the component holding the derived property, or by a rule in the immediately enclosing
component. This can be used to propagate property values up or down a component
hierarchy in order to make them easily accessible at different locations. A derived
property does not have to be explicitly stored, but can be computed whenever its value
is needed. It can thus be implemented as a function.

The prototype and configuration properties correspond to lexemes in a context free
grammar (e.g. identifiers, integer constants, boolean constants, string constants, etc.).
Derived properties, defined upwards or downwards, correspond exactly to the synthe-
sized and inherited attributes in an attribute grammar. As discussed in [8], it is particu-
larly simple to implement the attributes (derived properties) as functions by using the
virtual function construct in object-oriented languages.

4.2 Rules

Rules in OPG are placed in the component types and are specified at the type level. A
rule is local in the sense that it can refer to the propertiesetff(an instance of the
component type) and also to other components accessible in certain waysefifom
There are two kinds of rules: defining rules and validity rules:

Defining rules: A defining rule is a rule defining the value of a derived property. It cor-
responds to a semantic rule of an attribute grammar.

Validity rules: A validity rule is a boolean expression over properties. A configuration
is said to be valid if all the validity rules in the configuration are satisfied. A valid-
ity rule corresponds to a semantic condition in an attribute grammar.

OPG offers two ways of accessing properties in other componentsetfian



Frame
FramePlate.noOfBoltHoles = TighteningBolts.noOfBolts

FramePlate TighteningBolts
noOfBoltHoles: COUNT noOfBolts: COUNT

Fig. 5. Rule accessing subcomponent properties

Subcomponent referenceA rule may access or define properties of immediate sub-
components oelf

Enclosing reference:A rule may access a property of an enclosing component quali-
fied by a given type.

Fig. 5 shows an example of accessing subcomponent properties: A validity rule in
Frame checks that the FramePlate subcomponent has the same number of bolt holes as
there are bolts in the TighteningBolts subcompoﬁent.
The possibility to access and define propertiesaifiand in immediate subcomponents
corresponds directly to the mechanism for defining and accessing attributes in classical
attribute grammars. In principle, this possibility is sufficient for expressing arbitrary
rules, because it is always possible to introduce derived properties which copy the
information from one point in the configuration hierarchy to another. However, this
introduction of derived copy properties can be cumbersome and lead to a cluttered
specification. This problem is well known in attribute grammars and many attribute
grammar notation languages therefore introduce various shortcut notations to avoid
having to introduce such copy properties, see e.g. [11]. dimdosingmechanism
mentioned above is one such shortcut notation (called “including” in [11]). By letting a
component directly access a propertyin an enclosing componerf we can avoid
introducing a number of derived properties which copy the valygfodm e down to
c. Besides cutting down on the number of properties and rules, this shortcut notation is
very important for reusability reasons because it very effectively reduces the depen-
dencies between different component types. In the next section we will see how the
enclosingmechanism can be used very effectively in combination with mixin types.

In general, if a rule needs to refer to properties in two compor@rasdc,, there
are different alternatives for where to place the rule. By using a combination of derived
properties and thenclosingmechanism, the rule could be placed in any of the compo-
nents on the path frory, to c,. Which placement is chosen can greatly affect the size,
readability, and reusability of the specification.

As an example: consider checking that the depth of a Lining is the same as the
depth of the Hole in which it is placed. In our example, Hole has no explicit property
depth but if the Hole is in a FramePlate, the depth of the Hole is of course the same as

Lincasea component has only one subcomponent of a particular type, the type name (e.g.
FramePlate) can be used to access the subcomponent. Itis also possible to give subcomponents
explicit names as was done in Fig. 4.



holes [4]
FramePlate

thickness: DistanceProperty _
def holes[*].depth = self.thickness :| hloICCONtact
Hole contact

I depth: DistanceProperty

tional
Lining 42%w| FluidContact | |NoFIuidContact |

depth: DistanceProperty
self.depth = enclosing (Hole).depth

Fig. 6. Combined use of derived properties andehelosingmechanism

the thickness of the FramePlate. Fig. 6 shows a solution which combines the use of
derived properties and tleaclosingmechanism.

In this exampledepthis defined as a (downwards) derived property (indicated by
“1"). The FramePlate has a defining rule which defines the valdaepthof the Hole
subcomponents. The Lining has a validation rule which usesrthlbsingmechanism
to access théepthproperty and compare it with its owshepthproperty. It would be
possible to obtain a slightly smaller specification by letting the Lining refer directly to
the thickness property of FramePlate, thus making the depth property and its defining
rule unnecessary. However, that would make the specification less reusable because it
would not work for Holes in other components like, for example, PressurePlate. This
could be fixed by refactoring the type hierarchy, introducing a supertype for Frame-
Plate and PressurePlate where the thickness property would be declared, but this would
on the other hand make the specification bigger. We also find the solution in Fig. 6
more readable: the two rules express closely our explanation of the problem in infor-
mal english.

4.3  Main Types and Mixins

The component types we have seen so far model prototypical components and config-
uration components. We call theseain typesbecause the type captures the main
aspect of the component. Main types can be organized in a single inheritance hierarchy
to model different levels of generality. For example, (see fig. 7) BlindCover models
blind covers at a general level, whereas its subtypes LargeBlindCover and SmallBlind-
Cover are specialized alternatives: a LargeBlindCover must stand the pressure imposed
from the plate package and is therefore bolted to the FramePlate or PressurePlate,
whereas a SmallBlindCover is attached by a simple snap mechanism. This is modelled
by specifying different properties and rules in LargeBlindCover and SmallBlindCover.

It is often the case that component types which are unrelated in the main type hier-
archy, nevertheless share some properties and rules. In this case, one would like to
express the shared behavior in a separate type and reuse it by inheriting that type to the
appropriate main types (by multiple inheritance). Such types are aalldds see e.g.

[4]. OPG mixin and main types differ in the following ways:

10



Hole

connStd: ConnectionStandardProperty mixin type

I connStd: ConectionStandardProperty

= i |
BlindCover \Lself.connStd enclosing (Hole).connStd |

A AN

mixin inheritance

SmallBlindCover | |LargeBIindCover | |Inspecti0nCover |

Fig. 7. Use of mixin types

* Whereas a main type models the main aspect of a component, a mixin type models
only a partial behavior which may be common to several unrelated main types.

« A main type may inherit from at most one other main type (single inheritance), but
from any number of mixin types (multiple inheritance).

« Inheritance of mixin types is done in order to obtain specification reuse whereas
inheritance of main types is done to model specialized alternatives in a configura-
tion.

« A subcomponent must be declared to be of a main type. Mixin types may not be
used.

« A mixin type may not contain declarations of subcomponents, only property decla-
rations and rules.

« A mixin type is always abstract, i.e. it cannot be instantiated on its own.

The separation of types into two kinds: a full kind (main types) which can be arranged
using single inheritance, and a partial kind (mixin types) which can be arranged using
multiple inheritance is often recommended in object-oriented programming, see e.g.
[20]. This substantially improves readability and reusability over general multiple
inheritance, while retaining most advantages. A similar technique is also used in Java
with its separation into class types and interface types [2]. The combination of mixins
with shortcut notations like “enclosing” is very powerful. In attribute grammars this
technique has been used very effectively to define e.g. reusable scope rules [11] (the
use of mixins is there called “symbol inheritance”).

Fig. 7 shows an example of main and mixin inheritance. LargeBlindCover and
InspectionCover are unrelated in the main type hierarchy, but nevertheless have a com-
mon characteristic: they are components which are bolted to a hole in a FramePlate or
PressurePlate, and they need to use the same connection standard as is used for the
hole in the plate they are bolted to. To avoid repeating the specification of this charac-
teristic we specify it in a mixin type HoleBolted which is inherited by both Large-
BlindCover and InspectionCover.

11



Pairs of Mixin Types

The use of thenclosingconstruct makes a component dependent on some type in its
context. If not used with care, this may lead to reduced reusability, in case it is mean-
ingful to use the component in some other context. Therefore, when a component type
C refers to an enclosing tyde, the following question should be posed: would it be
meaningful to have & component in some other context which does not contais an
component? If the answer is “yes”, the reusability ©fis unnecessarily limited
because of its dependency &nIn our examples oénclosingabove, the enclosing

type is Hole. It seems reasonable to argue that the accessing types Lining, Inspection-
Cover, and LargeBlindCover are meaningful only in the context of a Hole, and there is
thus no problem with reusability.

In other cases, when the answer is “yes”, one may consider introducing a mixin
type also for the enclosing component. This introduces a pair of mixins which are
designed to work together: the “upper” mixin declares some properties which are
accessed using thenclosingmechanism in the “lower” mixin. This solves the reus-
ability problem because it makes the mixin types independent of the actual compo-
nents where they are mixed in, allowing the behavior to be mixed in for different
components and different contexts.

Consider the following example. In an operating PHE, the fluids have a certain
pressure, and many of the components like FramePlates, PressurePlates, Inspection-
Covers, and LargeBlindCovers must stand at least this pressure. A first solution to this
problem would be to introduce a mixin type PressureClassified which declares a prop-
erty maxPressure and uses #émelosingnechanism to compared it with the operating-
Pressure property of PHE. However, it is quite possible that we would like to reuse the
InspectionCover and LargeBlindCover types when modelling another product, for
example a spiral heat exchanger (SHE). In that case, these types would appear in the
context of a SHE component, and the maxPressure should instead be compared with
the operatingPressure property of SHE. The solution is to introduce a mixin Pres-
sureVessel which is inherited by both PHE and SHE as shown in Fig. 8. The mixins
PressureVessel and PressureClassified operate as a pair. They model the general behav-

| BhiE | | Shib | | PressureClassified |
" maxPrs: PressureProperty T‘
L self.maxPrs >= enclosing (PressureVessel).opPrs K
r—-———--—-—---- - - - - - —-—r~—- — — — _— - !
! ! ]
FramePlate | | PressurePlate | | InspectionCover | |LargeBIindCover

Fig. 8. Use of mixin pairs

12



ior of having a pressure vessel with an operating pressure, and components attached to
it are classified to stand at least that pressure. The mixin pair can then be reused for any
product exhibiting this general behavior.

5 Discussion

OPG is aimed at obtaining descriptions which are small, highly readable, and easy to
evolve and reuse; to obtain a high degree of checkability; and to allow automatic gen-
eration of efficient interactive configuration tools. We will now discuss different
aspects of OPG and how it contributes to these goals.

Architecture. The proposed architecture which is divided into the three levels of
types, prototypes, and configuration, supports the different phases in the design and
configuration process. Product designers define a family of related products by work-
ing at the type level. The prototype level describes the different mass-produced compo-
nents. The type level serves as an interface for defining new prototypes, placing
requirements on what physical and other external characteristics the new prototype
must possess. If values can be set for these properties, it will be possible to define the
prototype and use it in future configurations. Typically, these prototypical properties
will serve as requirements on subcontractors manufacturing the mass-produced parts.
Sales engineers work at the configuration level, defining how actual customized prod-
ucts are configured from mass-fabricated parts. This architecture fits mass-customiza-
tion problems like e.g. plate heat exchangers. For other kinds of products the design
may be more intertwined with configuration, e.g. as indicated in [15].

Checkability. The three-level architecture allows a clear definition of what kinds of
validity can be checked at each level. At the type level, the type system itself allows a
basic validity check, similar to the compile-time checking of strongly typed program-
ming languages like Pascal and Java, e.g. making sure that all accessed properties actu-
ally exist (i.e. that they are declared). The AG-inspired use of derived properties
furthermore allows checking if the derived properties are well-defined, i.e., that for any
possible configuration, there will be exactly one defining rule for each derived prop-
erty, thus avoiding under- or overdetermination with regards to derived properties. This

is an important aspect because it supports early error checking and can make designers
more confident they have designed a consistent model.

At the prototype level, it is possible to check if the prototype is complete, i.e. if all
prototypical properties are given values. It is also possible to do a partial check on the
validity of the prototype, by checking validity rules which use only prototypical prop-
erties of the (compound) prototype. At the configuration level, it is possible to do full
validity checking by checking if all validity rules are satisfied.

Interactive Configurator Tools. As described earlier, the AG technology allows

efficient interactive configurator tools to be generated from the type-level specification.
Such tools can support structure-oriented editing of configurations (using graphical or
textual editing techniques) and can check the validity as the configuration is edited,

13



using incremental attribute evaluation techniques. The validity checking can be done
very efficiently by AG evaluation techniques, making use of statically computed evalu-
ation plans (tables computed at tool generation time). It is important that the incremen-
tal evaluation is efficient in order to allow an interactive construction of the
configuration, giving immediate feedback on possible rule violations.

Readability and Reusability. All rules in OPG are local to a component and may
access properties of other components relative to that component. This is in contrast to
the global “for all” rules which often are used in knowledge-based systems. Because of
the implicit identification of the component itself, subcomponents, and components in
its context, local rules are usually much easier to understand. As discussed in section
4.3, a high degree of reusability is obtained through the combined use of mixins and
theenclosingmechanism.

5.1  Future work

We have used OPG successfully to model the mechanical configuration of plate heat
exchangers, resulting in a specification of 26 main types, 7 mixins, and 32 rules. Some
aspects which are not supported currently in OPG, but which are interesting topics for
future research include the following:

Support for Valid Choices. The AG-based model immediately supports octheck-

ing the validity of a configuration. It is also desirable to support the useoistruct-

ing a valid configuration. The user builds a configuration by successively adding
components, and at any time, the current partial configuration will limit the valid
choices for remaining components. The configurator should have support for con-
structing valid configurations by presenting only the valid choices, and for automati-
cally adding components when there is only one valid choice. It is also possible to
automatically complete a partial configuration using default components and configu-
ration properties. We plan to add such support by formalizing the choice-generation
framework used in CAS 2000 and integrate it into the OPG model.

Support for Graphs. OPG supports only configurations organized as a tree of com-
ponents. In general, one would like to support also graphs. We plan to support this in a
similar way as is done in Door attribute grammars [10], i.e., by introducing reference-
valued derived properties. This allows an arbitrary connection between two of the
components in a tree to be set up using derived properties, thus in effect turning the
tree into a graph. Rules can then access properties directly along such a connection.

Support for Versioning. A product family is usually not constant, but evolves over
time and the descriptions should be subject to revision control. It is very important that
existing type-instance and prototype-copy relations are not made inconsistent when the
types and prototypes evolve. These problems are similar to schema evolution problems
in object-oriented data bases, see e.g. [21], and similar techniques will probably be
useful for product models.

14



6 Related Work

6.1  Product Configurator Tools

Table-Based Tools.Many simpler hand-coded configurator tools use a table-based
approach. In these systems, each base product has a table which lists its available fea-
tures. A product is specified by choosing a base product and then adding a number of
features. When two features are not allowed to be combined for some base product,
this combination is listed in another table, a conflict table. This approach is based on
the assumption that features are highly independent of one another so that conflicts are
rare. At Alfa Laval Thermal, this technique was used in the first version of CAS (CAS
1), developed in 1988. A drawback with the table based approach is that it can handle
only quite simple dependencies between product components. To allow more complex
dependencies it is necessary to have some kind of rule concept which allows configura-
tion rules to be expressed over the components and their properties.

Framework-Based Tools.Another approach to configuration systems is dgect-
oriented frameworlapproach. Here the components of a configuration are modelled in
an object-oriented manner. All configuration rules are described as matching condi-
tions between attributes of the objects, and the logic is implemented by change propa-
gation rules. By ensuring that these rules define uni-directional chains, a highly
efficient change propagation mechanism can be implemented in the generic frame-
work. The actual rules for a specific product are then expressed by extending the
framework with hand-written code. As a result the model is fairly maintainable
although there is a translation step from domain experts to programmers which limits
verifiability. This approach is used in Alfa Laval's current CAS 2000 system developed
in 1992 [1].

Knowledge-Based ToolsWe differ between simplerule-basedsystems and more
advancedconstraint-basedsystems Rule-basedconfiguration systems are based on
logic programming and use a technology similar to expert systems. The formalism
allows all the relevant rules to be stated explicitly, and the order of evaluation is
decided by a general purpose inference engine which thereby determines the execution
logic. Rule-based systems are declarative, but they often have only limited support for
modularization. Typically, they work in a non-interactive mode, computing a complete
configuration from user requirements. An example of a rule based configuration sys-
tem is the seminal XCON (or R1) system for configuration of computer systems [14].
An evolution of the rule-based systems are tlomstraint-basedsystems. Con-
straint-based systems typically have two major advantages over conventional rule-
based systems. Firstly, different kinds of resolution strategies can be applied to differ-
ent kinds of constraints which can give significant improvements in execution effi-
ciency. Secondly, constraints are usually defined in some kind of object-oriented
model of the product. The classes in an object-oriented model gives a natural basis for
modularization so that large models can be structured in a way that make them locally
understandable. Constraint-based configurators thereby achieve both declarative

15



expression of configuration logic and a natural modularization of the model. Recent
constraint-based tools such as OBELICS [3] also support interactive configuration,
allowing the user to interactively select key components.

Comparison. A weakness of knowledge-based systems is that they are based on a
dynamically determined execution order. For hard configuration problems, i.e., when
the configurator has to optimize over a large space of possible configurations, the flex-
ibility and possibilities for global optimizations outweighs the drawbacks. Many con-
figuration problems, however, are not hard. What is important is instead that the tool
can be highly interactive and give immediate feedback on what the user selects. In
other words, the system should be highly supportive of running “what-if’ scenarios.

OPG’s attribute grammar approach presented in this paper combines the advan-
tages of declarative statement of optimized execution efficiency and highly responsive
interactive support. As the user changes the configuration, dependent rules can be re-
evaluated incrementally according to a statically determined execution order, giving
immediate feedback on the validity of the configuration.

OPG is also focused on providing early error detection in the product model. This
is supported by the strong type system and in the possibility to check that all attributes
are uniquely defined by the rules. This is in contrast to the tradition in knowledge-
based systems which are usually based on dynamic checking only.

6.2  Product Data Management

Product configuration modelling is one aspect in the larger context of Product Data
Management (PDM) which covers all information related to product design and manu-
facturing. Most PDM system in industrial use today have little functionality that is spe-
cific to product data. Their main emphasis is versioning of files (typically for CAD-
programs and word-processors) combined with work flow support and change man-
agement. Usually some form of support for the bill-of-material concept, i.e.hierarchi-
cal configurations, is also included.

PDM is slowly evolving away from this document-centric view towards more
explicit product models. In a product model, information is structured so that it can be
easily processed by different kinds of software tools, for example product configura-
tors. When needed, various kinds of documents can be derived automatically from the
model.

Product modelling technology is often based on some kind of object-oriented for-
malism with mechanisms for describing properties and rules. The most notable exam-
ple here is the EXPRESS language [17] created by the STEP initiative which is an
ongoing effort to create an international standard for the exchange of product model
data.

On the surface, OPG is similar to EXPRESS because they are both product model-
ling languages with constructs like classes, properties, and rules (called entities,
attributes, and rules in EXPRESS). However, there are many differences, the main one
being that OPG explicitly supports an attribute grammar model with a component hier-
archy (abstract syntax tree) and upwards and downwards derived properties.

16



EXPRESS supports upwards derived properties, but downwards derived properties and
the use of properties in enclosing classes would have to be simulated by using validity
rules and explicit specification of enclosing components, leading to complex specifica-
tions not suited for AG processing and less suited for reuse and early error-detection.
Furthermore, OPG has explicit support for prototypes whereas in EXPRESS these
would have to be simulated by subclasses. To summarize, OPG is a product modelling
language suitable for mass-customization products and for the generation of interac-
tive configuration tools. It would, however, be possible to translate OPG to EXPRESS
in order to make OPG specifications available to EXPRESS-based tools.

6.3  Software Configuration Management

Configuration management techniques have been developed independently for
mechanical products and software products, and it may be interesting to compare these
different problems and techniques.

In both cases, there is a configuration problem, i.e. a problem of selecting specific
components to form a complete product which is internally consistent in some way. An
overview of Software Configuration Management (SCM) systems is given in [5]. Most
SCM systems argersion-orientedwhere each component exists in several versions
organized asvariants (alternative versions) andevisions (consecutive versions).
Often, the component set making up the product is predefined, e.g. in a makefile, and
the central configuration problem is to select a suitable version for each of the compo-
nents, typically in order to configurate a product suitable for a given execution plat-
form. In OPG, the central configuration problem is instead to select which components
make up the product.

A fundamental difference is that a component in OPG may occur in several
instances in the product, e.g. the PHE configuration in Fig. 3 contains 4 instances of
Lining. In SCM, on the other hand, a component appears at most once in the configura-
tion. In some SCM systems, the definition of the component set is intertwined with
version selection, resulting in a configuration process more similar to OPG. However,
the fundamental difference concerning multiple/single component instances remains.

The types and prototypes in OPG may be compared with components and variants
in SCM: prototypes may be seen as different variants of their type. In OPG, the proto-
types of a type differ in their property values. Similarly, the variants of a component in
SCM are often characterized by attributes or features [6, 22]. However, the selection
rules work quite differently. In OPG, the rules are localized to the components and
check consistency between a component and its enclosing components and subcompo-
nents, e.g. checking that a Lining has the same diameter as its enclosing Hole. In SCM,
the rules are usually global and used to select component variants regardless of their
context, e.g., selecting the Unix variant of all source module components in the sys-
tem. One SCM system which does make use of local rules is DCDL [18] where rules
are part of class definitions and can check consistency between a component and its
subcomponents.

Revision control is central in SCM: within a component variant, there may be sev-
eral consecutive revisions which can be attributed with date, release number, etc. In

17



contrast, each OPG variant (prototype) exists in only one version. The reason is that
the physical components modelled by prototypes are not seen as being in a revision
relation: either they are completely interchangeable, in which case they are modelled
by the same prototype; or they differ in some property values, in which case they are
modelled by different prototypes. Typically, different physical components are mod-
elled by the same prototype if they are manufactured by different subcontractors, but
have the same function in the product, and which actual component is selected at man-
ufacturing is irrelevant to the customer. Revision control is, however, highly relevant to
OPG at itsmeta leveli.e. when specifying OPG types and prototypes in order to gen-
erate a configuration tool. These specifications are evolving software which can be
placed under revision control, as noted in section 5.1.

The current trends in software architecture of using component technology will
give rise to new configuration problems in software which have similarities to the
mass-customization problems treated by OPG. As interconnection standards like
COM, CORBA, and Java Beans are coming into wide use, the granularity of the units
of deployment is decreasing. Monolithic applications are giving way to a larger num-
ber of more or less independent components, moving the main configuration problem
from build-time to install-time, or even to launch- or run-time. The responsibility for
building correct configurations is thereby separated from component development.
This separation must then be compensated by the components being more self-con-
tained. When delivered, they must contain sufficiently rich meta-data to enable auto-
matic generation and/or validation of correct configurations. The problem is similar to
that of product mass-customization, and it is possible that product configuration for-
malisms like OPG can play a role here. The SCM system DCDL [18] is aimed at run-
time configuration problems, and as noted above it has some similarity to OPG in that
it also supports local rules.

7 Conclusions

OPG is a product modelling language which is primarily aimed at configuration of
highly customized products built from mass-produced components. We believe it
shows the benefits of basing configuration technology on object-orientation and
attribute grammars. This combination gives strong modelling capabilities, allowing
configuration constraints to be expressed and understood locallgnihesingmech-
anism and the use of mixin pairs in particular allows the model to be highly factorized
so that redundant information is avoided. The type-prototype-copy architecture is
introduced to match the different levels of product component type, mass-produced
component, and actual component. The use of attribute grammars gives OPG both a
theoretical basis for early validation and techniques for the automatic generation of
efficient interactive configurator tools.

References

1. Alfa Laval Thermal ABCAS 2000. User’'s ManudlLund, Sweden, 1993.

18



n

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

K. Arnold and J. Gosling'he Java Programming Languagkddison-Wesley. 1996.

T. Axling and S. Haridi. A tool for developing interactive configuration applicatidoarnal

of Logic Programmin@6(2): 147-168 (1996).

G. Bracha and W. Cook. Mixin-Based Inheritance. OOPSLA/ECOOR@M SIGPLAN
Notices Vol. 25, No 10, pp. 303-311. 1990.

R. Conradi and B. Westfechtel. Configuring Versioned Software Producaftware Con-
figuration Management, ICSE’96 SCM-6 Workshpp 88-109. LNCS 1167, Springer-Ver-
lag. 1996.

J. Estublier and R. Casallas. The Adele Configuration Manager. In Tichy@&df)guration
ManagementWiley, 1994.

E. Gamma, R. Helm, R. Johnson, J. Vlissidassign Patterns. Elements of Reusable Object-
Oriented SoftwareAddison-Wesley. 1995.

G. Hedin. An object-oriented notation for attribute grammBGOOP’89 BCS Workshop
Series, pp 329-345, Cambridge University Press. 1989.

G. Hedin. Context-sensitive editing in Orm. Proceedings ofNbadic Workshop on Pro-
gramming Environment Researchampere University of Technology, Finland. Software
Syst. Lab. TR 14. 1992,

G. Hedin. An overview of Door attribute grammargernational Conference on Compiler
Construction (CC'94)LNCS 786, Springer Verlag. 1994.

U. Kastens and W. M. Waite. Modularity and Reusability in Attribute GramnAats. Infor-
matica 31:601-627, 1994.

D. E. Knuth. Semantics of context-free languagésthematical Systems TheoB8(2):127-

145, June 1968.

H. Lieberman. Using prototype objects to implement shared behavior in object oriented sys-
tems. In OOPSLA’86, pp 214-223CM SIGPLAN Noticesyol. 21, No. 11, September
1986.

J. McDermott. R1: A Rule-Based Configurer of Computer Systéntgicial Intelligence

Vol. 19, 1 (Sept 1982):39-88.

H. Peltonen, T. Mannistd, K. Alho, R. Sulonen. Product Configurations - An Application for
Prototype Object Approach. ECOOP'94 pp 513-534. LNCS 821, Springer Verlag. 1994.
T. W. Reps and T. Teitelbaurihe Synthesizer Generator. A system for constructing lan-
guage-based editor$pringer Verlag. 1989.

D. Schenck and P. Wilsoinformation Modeling the EXPRESS Wa&yxford University
Press. 1994.

B. R. Schmerl and C. D. Marlin. Versioning and consistency for dynamically composed con-
figurations. InSoftware Configuration Management, ICSE'97 SCM-7 Worksppp!9-65.
LNCS 1235, Springer-Verlag. 1997.

J. J. Shah and M. MéntyRarametric and Feature-Based CAD/CAWiley. 1995.

Taligent IncTaligent’s guide to designing programs - well-mannered object-oriented design
in C++. Addison-Wesley. 1994.

A. H. Skarra and S. B. Zdonik. The management of changing types in an object-oriented da-
tabase. In OOPSLA’86, pp 483-49ACM SIGPLAN Noticesyol. 21, No. 11, September
1986.

A. Zeller and G. Snelting. Handling Version Sets Through Feature Log®oftware Engi-
neering - ESEC'95pp 191-204. LNCS 989. Springer-Verlag. 1995.

19



	1 Introduction
	2 Plate Heat Exchangers
	3 The OPG Configuration Model
	4 Elements in OPG
	5 Discussion
	6 Related Work
	7 Conclusions
	References

