
prod-

gura-
to be
t all
uick
the

res
d by
ld be
del.

, and

nted
on
ides
ssing
and

on-
rsity
ers.

000
The

tively

In Proceedings of the 8th International Symposium on Sys-
tem Configuration Management (SCM-8), Brussels, July 20-
21, 1998. LNCS-1439, pp 107-126, Springer-Verlag.
Product Configuration Using Object Oriented Grammars

Görel Hedin1, Lennart Ohlsson2, and John McKenna3

1 Dept of Computer Science, Lund University, Sweden.Gorel.Hedin@dna.lth.se
2 Utilia Consult, Malmö, Sweden.lennart@utilia.se

3 Alfa Laval Thermal AB, Lund, Sweden.djohn.mckenna@alfalaval.com

Abstract. This paper presents a technique for product configuration modelling
based on object-orientation and attribute grammars. The technique allows effi-
cient interactive configurator tools to be generated for specified product families.
Additional benefits include a high degree of checkability, early validation, read-
ability, and reusability. The technique is particularly aimed at mass-customiza-
tion products and an example concerning the mechanical configuration of plate
heat exchangers is used to demonstrate its benefits.

1 Introduction

Complex products are often designed as product families where each customized
uct is a configuration of interrelated components. Aproduct configuratoris a tool
which supports the product configuration process so that all the design and confi
tion rules which are expressed in a product configuration model are guaranteed
satisfied. The configurator simplifies the manufacturing process by assuring tha
orders received are possible to build. Interactive configurator tools can support q
and flexible customization by giving immediate and accurate information about
available combinations of options.

Ideally, the product configuration model should be written in a form which captu
the design intent in a direct way, allowing the model to be easily read and change
the domain engineers themselves, without involving expert programmers. It shou
possible to generate computer-aided configuration tools automatically from the mo
In this scenario, the software cost for a product change can be easily predicted
changes can be introduced within days.

As a step towards this ideal scenario, we have developed OPG (Object-Orie
Product Grammar) - a configuration model description language which is based
object-oriented programming and attribute grammars. Object-orientation prov
suitable modelling support and attribute grammars forms a suitable base for expre
configuration rules. Attribute grammars furthermore provide a well-established
efficient technology for the generation of interactive tools [16, 10].

The OPG work has grown out of an effort to formally describe the mechanical c
figuration of plate heat exchangers in a cooperation project between Lund Unive
and Alfa Laval Thermal, the world leading supplier of plate and spiral heat exchang
Alfa Laval Thermal has developed an interactive configuration tool called CAS 2
(Computer Aided Sales) [1] which is used at market companies around the world.
tool allows customized design of plate heat exchangers. The user can interac
1

ifferent
rna-
rnally
pre-
ufac-

nted
ra-
ew

our
d for
tion,
en in
lated

with
ondi-
d the
ea for
truc-

umn,
an be
out-
enter requirements on e.g. pressures and temperatures, and select a number of d
options according to engineering rules. The tool automatically presents valid alte
tives for selection, and also checks that the designed plate heat exchanger is inte
consistent, i.e., that it is possible to build. When a design is complete, the tool can
pare quotations for customers and send electronic orders to the appropriate man
turing unit.

The immediate goal of the OPG work is to be able to replace the hand impleme
configurator in CAS 2000 with a configurator generated automatically from decla
tive descriptions, thereby allowing the tool to be updated quickly to incorporate n
product developments, eliminating the need for programming.

The rest of this paper is organized as follows. Section 2 gives an overview of
running example: plate heat exchangers, and the configuration problems involve
this product. Section 3 explains the architecture we propose for product configura
and section 4 discusses key elements in the OPG formalism. A discussion is giv
section 5 where we also give an outlook on future work. Section 6 discusses re
work and section 7 concludes the paper.

2 Plate Heat Exchangers

A heat exchanger is a device for heating or cooling a fluid by exchanging heat
another fluid. Examples of use are in chemical processing, dairy processing, air c
tioning, etc. A plate heat exchanger (PHE) consists of a pack of metal plates an
fluids are directed into alternate channels between the plates so that a large ar
heat exchange is obtained without letting the fluids mix. Fig. 1 shows the basic s
ture of a PHE.

Our example concerns themechanical configurationof the PHE, i.e. how a plate
package is configured with frame plate, pressure plate, carrying bar, support col
tightening bolts, etc. Each frame plate and pressure plate has four holes which c
used in different ways. Four of the holes are used for connecting the incoming and

Frame plate

Pressure plate

Support column

Carrying bar

Guiding bar

Tightening bolts

Plate package

Fig. 1. Mechanical configuration of plate heat exchanger

Connection hole
2

ec-
ate
ole is
to

nd of
mpo-
sible,

uced.
, etc.,
dual
nents
fig-

corro-

tion
g, or
as a
mbly
m-
lts.
se that
prod-

con-

m-
tor

duct
ntly
nents

del
n on

late
plate,

d in
tes.
going two fluids. Other holes can be covered with inspection covers (to allow insp
tion of a fluid). Some holes will not be in contact with any fluid, because the pl
package does not have a hole in the corresponding position. In that case, the h
simply covered by a blind cover. Examples of configuration options include how
place the connections and covers, how to select components of matching sizes a
appropriate material so that adjacent materials do not corrode and so that the co
nents will stand the pressure requirements. When different configurations are pos
the cheapest one is usually preferable.

What is interesting about this example is that PHEs as such are not mass prod
Rather, the individual components, such as plates, carrying bars, support columns
come in many different variants (each of which is mass produced), but each indivi
sold PHE usually represents a unique configuration of components. The compo
come in many different sizes and material in order to fit different plate package con
urations and to cater for the customer requirements on for example pressure and
sion properties.

Alfa Laval Thermal has for more than two decades applied leading edge produc
principles such as process oriented organization and build-to-order manufacturin
what is now known as mass-customization. The product model used is known
building block system. From a manufacturing perspective a block is a named asse
with a fixed set of components, i.e. it identifies a particular bill-of-material. For exa
ple, a given “tightening bolts block” identifies a certain set of actual nuts and bo
From a sales perspective, however, a block appears as a component in the sen
blocks are the atomic elements which can be configured into a customer specific
uct.

3 The OPG Configuration Model

Taking a general perspective, we can view a product configuration as a set of
nectedcomponents, each with a number ofproperties. A number ofrules over the
components and properties define the validity of the configuration: Avalid product
configurationis a configuration where all rules are satisfied. This general view is co
mon in product configuration, see e.g. [19, 17]. An interactive product configura
tool, like CAS 2000 discussed above, allows the user to interactively edit a pro
configuration by adding, removing, or changing components. The tool consta
checks if the current configuration is valid and also helps the user to select compo
which will result in a valid configuration.

OPG (Object-Oriented Product Grammar) is a formal product configuration mo
based on object-orientation and attribute grammars. This model allows specificatio
three levels:

Type level: Specification of product types and their principle components, e.g. p
heat exchangers and their principle components such as frame plate, pressure
carrying bar, etc.

Prototype level:Specification of the mass-produced components which can be use
product configuration. E.g., specification of different mass-produced frame pla
3

a
.

fig-
ool
ase of

t the
the
igh
ighly

per-
5 we
o-

epre-
in turn
s not
onal,
ave

ate,
ith

fit-
nter-
ical

duced

ve a

con-
Configuration level: Specification of individual customized configurations. E.g.,
milk cooler configured from instances of specific mass-produced components

Our work aims at the possibility to automatically generate product-specific con
urator tools like CAS 2000 by giving the product type specification as input to a t
generator and using the description of the mass-produced components as a datab
the configurator tool. Fig. 2 outlines this approach. The main reason to suppor
generation of the configurator tool is to be able to quickly incorporate changes to
configurator as the product type evolves. In addition, it is important to support a h
degree of consistency checking at all three levels, and that the specifications are h
readable and reusable to support evolution.

3.1 The Component Hierarchy

As mentioned, a product configuration is a set of connected components with pro
ties and rules. In OPG, the components are connected in a hierarchy. In section
will discuss the possibilities of generalizing this to a graph. A very simplified comp
nent hierarchy for a plate heat exchanger is shown in Fig. 3. The top component r
sents the complete PHE consisting of a PlatePackage and a Frame. The Frame
consists of a FramePlate, a PressurePlate, and TighteningBolts. This PHE doe
have any CarryingBar or SupportColumn - these components are in general opti
but may be required in specific configurations. All four Holes on the FramePlate h
contact with fluid (FluidContact) and are fitted with Linings. On the PressurePl
three of the Holes are not in contact with fluid (NoFluidContact) and are covered w
BlindCovers, whereas the fourth hole is in contact with fluid (FluidContact) and is
ted with a Lining and an InspectionCover. The PlatePackage has, in principle, an i
nal configuration of different kinds of plates, but since we are dealing with mechan
configuration only, we simply view it as a black box here.

Some of the components, e.g. FramePlate, correspond to physical mass-pro
components, and we call theseprototypical components. These components will typi-
cally have a bill-of-material associated with them. Other components do not ha
physical correspondence and are calledconfiguration components. These components
may have the role of grouping prototypical components, e.g. Frame, indicating a

product type Generator

mass-produced

product
Configurator

type level

prototype

configuration

input

generateinput

edit

Fig. 2. Specification levels and tools

level
interact

level components

configuration check

sales engineer
4

er

nts:

fied at

po-
hier-
each

indi-
Each

t
proto-
ties
s at
the
figuration choice, e.g. FluidContact and NoFluidContact, or modelling custom
requirements, e.g. PHE.

A componentc on the path towards the root from a components is said to be
enclosing s. Inversely, thescomponent is said to be asubcomponentof c. For example,
the InspectionCover component in Fig. 3 has the following enclosing compone
FluidContact, Hole, PressurePlate, Frame, PHE.

3.2 The Specification Levels

Different aspects of the components, connections, properties, and rules, are speci
different specification levels:

Type level: At this level component types are declared to model the types of com
nents which occur in configurations. The types are arranged in an inheritance
archy of more general and more specific types (supertypes and subtypes). For
component type, its connections (in the component hierarchy) are declared,
cating mandatory and optional subcomponents, and arrays of subcomponents.
component type also contains declarations of properties and rules.

Prototype level: At this levelprototypes, i.e. instances of the prototypical componen
types, are specified, to model the components that are mass produced. Each
type is given explicit values for some or all of the connections and proper
declared in its type. Usually, all of the properties of a prototype are given value
this level, but the possibility to leave out some of the property values allows

Hole

Lining

FluidContact

Hole

Lining

FluidContact

Hole

Lining

FluidContact

Hole

Lining

FluidContact

PHE

PlatePackage Frame

FramePlate PressurePlate TighteningBolts

Fig. 3. A component hierarchy

Configuration component Prototypical component

Hole

BlindCover

NoFluidContact

Hole

BlindCover

NoFluidContact

Hole

BlindCover

NoFluidContact

Hole

InspectionCover

FluidContact

Lining
5

ay

nd
rties

type
tion
the
L2,
ility
r a
and

pes
nd the
. The
rea of
er, a
e or

r is
PG

tions
the

s the
it is
ttrib-
s to
ven
r ear-
tain

k the
ppli-
k the

the
ide
evel-
e e.g.
rrect
specification ofparameterizedcomponents. For example, an insulation board m
be manufactured as piece goods, sold by the metre, and its propertylengthmay be
given a value at the configuration level rather than at the prototype level.

Configuration level: At this level instances of configuration component types a
copies of prototypes are specified and the (remaining) connections and prope
are given values.

Fig. 4 shows an example of types, prototypes, and a partial configuration. The
level specifies prototypical types like FramePlate, Hole, and Lining, and configura
types like HoleContact and its two subtypes FluidContact and NoFluidContact. At
prototype level, different prototypes for FramePlate (FP1, FP2, ...) and Lining (L1,
...) are specified with differing property values. The example also shows the possib
for prototypes to specify subcomponents, by specifying the different Holes fo
FramePlate. At the configuration level, instances of FluidContact are specified
connected with copies of the FP1 and L1 prototypes.

The model is clearly heavily inspired by object-orientation. The component ty
correspond to classes, the prototypes to prototype instances of the classes, a
instances at the configuration level to instances of classes or copies of prototypes
object-oriented concept of prototypes and copies [13] has also been used in the a
product configuration by e.g. Peltonen et al. [15]. Our use of prototypes is, howev
direct application of the Prototype design pattern [7] rather than the use of prototyp
delegation-based programming as in [13, 15].

The model is also heavily inspired by attribute grammars. An attribute gramma
an extension of a context-free grammar with attributes and semantic rules [12]. O
component types with its connections correspond to the nonterminals and produc
of the context-free part of the grammar, and the OPG properties and rules to
attributes and semantic rules of the grammar. Some of our previous work [8] show
benefits of using object-oriented notations for attribute grammars, similar to how
done here. The configuration, i.e. the component hierarchy, corresponds to an a
uted syntax tree, and the notion of valid product configuration is directly analogou
the notion of a syntax tree with a valid attribution. Attribute grammars have pro
especially suitable for generating interactive language-based editors [16], and ou
lier work shows how to use object-oriented attribute grammar techniques to ob
very efficient incremental evaluators [10]. Such evaluators can incrementally chec
attribution validity as the user edits the syntax tree, and the technique is directly a
cable to product configurator tools where an automated mechanism can chec
validity of a configuration as it is edited.

An important aspect of product configurator tools is that they should support
user not only with checking validity, but with selecting valid components. To prov
attribute-grammar based support for this is an area for future work, but we have d
oped fragments of such techniques in the area of language-based editing, wher
semantic editing can be used to provide a user with menus of visible and type-co
identifiers [9].
6

e or
how
rop-

pe
m-
4 Elements in OPG

4.1 Properties

All properties are declared at the type level, but may be given values at the prototyp
configuration level. There are three different modes for properties depending on
they are given values: prototype properties, configuration properties, and derived p
erties.

Prototype properties. These are properties which are given values at the prototy
level. A prototype property typically reflects some physical characteristic of the co

Fig. 4. Examples of types, prototypes, and instances in a partial configuration

FramePlate

thickness: DistanceProperty

Hole

diameter: DistanceProperty

Lining

depth: DistanceProperty
diameter: DistanceProperty

FP1

thickness=20 mm

diameter=70 mm
diameter=70 mm

diameter=70 mm
diameter=70 mm

holes

FP2

thickness=20 mm

diameter=70 mm
diameter=70 mm

diameter=70 mm
diameter=100 mm

holes

L1

depth=20 mm
diameter=70 mm

L2

depth=20 mm
diameter=100 mm

FP1

thickness=20 mm

diameter=70 mm
diameter=70 mm

diameter=70 mm
diameter=70 mm

holes

FluidContact

depth=20 mm
diameter=70 mm

L1

depth=20 mm
diameter=70 mm

contact

lining

Prototypical types Configuration types

FramePlate Prototypes

FluidContact

depth=20 mm
diameter=70 mm

FluidContact

depth=20 mm
diameter=70 mm

FluidContact L1

depth=20 mm
diameter=70 mm

L1

depth=20 mm
diameter=70 mm

L1

depth=20 mm
diameter=70 mm

Partial configuration

inheritance

subcomponent

array [4] holes

contact

optional

HoleContact

FluidContact NoFluidContact

Lining Prototypes

lining
7

racter-

gu-
fig-
ple,

upper-
oper-
, an
f the
roper-
nical

ng
uced
ater.

in
sing
onent
ived
alue

free
etc.).

nthe-
ticu-
the

el. A

r-

on
d-
ponent, e.g. thickness or diameter as in the example above, or some imposed cha
istic such as a price.

Configuration properties. These are properties which are given values at the confi
ration level, either by the user explicitly or computed by some external tool. A con
uration property set by the user typically reflects a customer requirement. For exam
the Frame type has several configuration properties such as operatingPressure,
Temperature, and lowerTemperature. External tools may also set configuration pr
ties, allowing these tools to be interfaced to the main configurator. For example
external tool computing the plate package configuration could set the properties o
PlatePackage component, e.g. length, plateMaterial, and gasketMaterial. These p
ties can then be used by the main configurator to check the validity of the mecha
configuration.

Derived properties. The value of a derived property is computed by a rule, maki
use of other property values or constants. Typically, derived properties are introd
in order to make other rules simpler to express. We will see examples of this l
There are two principle ways of defining the value of a derived property: by a rule
the component holding the derived property, or by a rule in the immediately enclo
component. This can be used to propagate property values up or down a comp
hierarchy in order to make them easily accessible at different locations. A der
property does not have to be explicitly stored, but can be computed whenever its v
is needed. It can thus be implemented as a function.
The prototype and configuration properties correspond to lexemes in a context
grammar (e.g. identifiers, integer constants, boolean constants, string constants,
Derived properties, defined upwards or downwards, correspond exactly to the sy
sized and inherited attributes in an attribute grammar. As discussed in [8], it is par
larly simple to implement the attributes (derived properties) as functions by using
virtual function construct in object-oriented languages.

4.2 Rules

Rules in OPG are placed in the component types and are specified at the type lev
rule is local in the sense that it can refer to the properties ofself (an instance of the
component type) and also to other components accessible in certain ways fromself.
There are two kinds of rules: defining rules and validity rules:

Defining rules: A defining rule is a rule defining the value of a derived property. It co
responds to a semantic rule of an attribute grammar.

Validity rules: A validity rule is a boolean expression over properties. A configurati
is said to be valid if all the validity rules in the configuration are satisfied. A vali
ity rule corresponds to a semantic condition in an attribute grammar.

OPG offers two ways of accessing properties in other components thanself:
8

b-

ali-

e in
oles as

s
sical

ary
the

his
ered
ute
void

g a

on is
pen-

the
.

ived
o-
e,

the
rty
e as

.g.
onents
Subcomponent reference:A rule may access or define properties of immediate su
components ofself.

Enclosing reference:A rule may access a property of an enclosing component qu
fied by a given type.

Fig. 5 shows an example of accessing subcomponent properties: A validity rul
Frame checks that the FramePlate subcomponent has the same number of bolt h
there are bolts in the TighteningBolts subcomponent.1

The possibility to access and define properties inselfand in immediate subcomponent
corresponds directly to the mechanism for defining and accessing attributes in clas
attribute grammars. In principle, this possibility is sufficient for expressing arbitr
rules, because it is always possible to introduce derived properties which copy
information from one point in the configuration hierarchy to another. However, t
introduction of derived copy properties can be cumbersome and lead to a clutt
specification. This problem is well known in attribute grammars and many attrib
grammar notation languages therefore introduce various shortcut notations to a
having to introduce such copy properties, see e.g. [11]. Theenclosingmechanism
mentioned above is one such shortcut notation (called “including” in [11]). By lettin
componentc directly access a propertyp in an enclosing componente, we can avoid
introducing a number of derived properties which copy the value ofp from e down to
c. Besides cutting down on the number of properties and rules, this shortcut notati
very important for reusability reasons because it very effectively reduces the de
dencies between different component types. In the next section we will see how
enclosing mechanism can be used very effectively in combination with mixin types

In general, if a rule needs to refer to properties in two componentsc1 andc2, there
are different alternatives for where to place the rule. By using a combination of der
properties and theenclosingmechanism, the rule could be placed in any of the comp
nents on the path fromc1 to c2. Which placement is chosen can greatly affect the siz
readability, and reusability of the specification.

As an example: consider checking that the depth of a Lining is the same as
depth of the Hole in which it is placed. In our example, Hole has no explicit prope
depth, but if the Hole is in a FramePlate, the depth of the Hole is of course the sam

1 In case a component has only one subcomponent of a particular type, the type name (e
FramePlate) can be used to access the subcomponent. It is also possible to give subcomp
explicit names as was done in Fig. 4.

Fig. 5. Rule accessing subcomponent properties

FramePlate

noOfBoltHoles: COUNT

Frame

FramePlate.noOfBoltHoles = TighteningBolts.noOfBolts

TighteningBolts

noOfBolts: COUNT
9

se of

by

to
ning
use it
his

me-
would
g. 6
for-

onfig-
in
archy
els
lind-
posed
Plate,
elled
ver.
hier-
ike to
to the
the thickness of the FramePlate. Fig. 6 shows a solution which combines the u
derived properties and theenclosing mechanism.

In this example,depthis defined as a (downwards) derived property (indicated
“↓”). The FramePlate has a defining rule which defines the value ofdepthof the Hole
subcomponents. The Lining has a validation rule which uses theenclosingmechanism
to access thedepthproperty and compare it with its owndepthproperty. It would be
possible to obtain a slightly smaller specification by letting the Lining refer directly
the thickness property of FramePlate, thus making the depth property and its defi
rule unnecessary. However, that would make the specification less reusable beca
would not work for Holes in other components like, for example, PressurePlate. T
could be fixed by refactoring the type hierarchy, introducing a supertype for Fra
Plate and PressurePlate where the thickness property would be declared, but this
on the other hand make the specification bigger. We also find the solution in Fi
more readable: the two rules express closely our explanation of the problem in in
mal english.

4.3 Main Types and Mixins

The component types we have seen so far model prototypical components and c
uration components. We call thesemain typesbecause the type captures the ma
aspect of the component. Main types can be organized in a single inheritance hier
to model different levels of generality. For example, (see fig. 7) BlindCover mod
blind covers at a general level, whereas its subtypes LargeBlindCover and SmallB
Cover are specialized alternatives: a LargeBlindCover must stand the pressure im
from the plate package and is therefore bolted to the FramePlate or Pressure
whereas a SmallBlindCover is attached by a simple snap mechanism. This is mod
by specifying different properties and rules in LargeBlindCover and SmallBlindCo

It is often the case that component types which are unrelated in the main type
archy, nevertheless share some properties and rules. In this case, one would l
express the shared behavior in a separate type and reuse it by inheriting that type
appropriate main types (by multiple inheritance). Such types are calledmixins, see e.g.
[4]. OPG mixin and main types differ in the following ways:

Fig. 6. Combined use of derived properties and theenclosing mechanism

FramePlate

thickness: DistanceProperty

Hole

↓ depth: DistanceProperty

def holes[*].depth = self .thickness

Lining

depth: DistanceProperty
self .depth = enclosing (Hole).depth

holes [4]

contact

optional

HoleContact

FluidContact NoFluidContactlining
10

dels
.

but

reas
ura-

t be

cla-

ged
sing
e.g.

ple
Java
xins
is
] (the

nd
com-
te or
for the
rac-

e-
• Whereas a main type models the main aspect of a component, a mixin type mo
only a partial behavior which may be common to several unrelated main types

• A main type may inherit from at most one other main type (single inheritance),
from any number of mixin types (multiple inheritance).

• Inheritance of mixin types is done in order to obtain specification reuse whe
inheritance of main types is done to model specialized alternatives in a config
tion.

• A subcomponent must be declared to be of a main type. Mixin types may no
used.

• A mixin type may not contain declarations of subcomponents, only property de
rations and rules.

• A mixin type is always abstract, i.e. it cannot be instantiated on its own.

The separation of types into two kinds: a full kind (main types) which can be arran
using single inheritance, and a partial kind (mixin types) which can be arranged u
multiple inheritance is often recommended in object-oriented programming, see
[20]. This substantially improves readability and reusability over general multi
inheritance, while retaining most advantages. A similar technique is also used in
with its separation into class types and interface types [2]. The combination of mi
with shortcut notations like “enclosing” is very powerful. In attribute grammars th
technique has been used very effectively to define e.g. reusable scope rules [11
use of mixins is there called “symbol inheritance”).

Fig. 7 shows an example of main and mixin inheritance. LargeBlindCover a
InspectionCover are unrelated in the main type hierarchy, but nevertheless have a
mon characteristic: they are components which are bolted to a hole in a FramePla
PressurePlate, and they need to use the same connection standard as is used
hole in the plate they are bolted to. To avoid repeating the specification of this cha
teristic we specify it in a mixin type HoleBolted which is inherited by both Larg
BlindCover and InspectionCover.

HoleBolted

connStd: ConectionStandardProperty
self .connStd = enclosing (Hole).connStd

Hole

connStd: ConnectionStandardProperty

Fig. 7. Use of mixin types

mixin inheritance

mixin type

BlindCover

LargeBlindCoverSmallBlindCover InspectionCover
11

its
ean-
type

e

ction-
e is

ixin
are
are
-
po-

ent

tain
ection-

this
rop-
-
the
for

in the
d with
res-
xins
behav-
Pairs of Mixin Types
The use of theenclosingconstruct makes a component dependent on some type in
context. If not used with care, this may lead to reduced reusability, in case it is m
ingful to use the component in some other context. Therefore, when a component
C refers to an enclosing typeE, the following question should be posed: would it b
meaningful to have aC component in some other context which does not contain anE
component? If the answer is “yes”, the reusability ofC is unnecessarily limited
because of its dependency onE. In our examples ofenclosingabove, the enclosing
type is Hole. It seems reasonable to argue that the accessing types Lining, Inspe
Cover, and LargeBlindCover are meaningful only in the context of a Hole, and ther
thus no problem with reusability.

In other cases, when the answer is “yes”, one may consider introducing a m
type also for the enclosing component. This introduces a pair of mixins which
designed to work together: the “upper” mixin declares some properties which
accessed using theenclosingmechanism in the “lower” mixin. This solves the reus
ability problem because it makes the mixin types independent of the actual com
nents where they are mixed in, allowing the behavior to be mixed in for differ
components and different contexts.

Consider the following example. In an operating PHE, the fluids have a cer
pressure, and many of the components like FramePlates, PressurePlates, Insp
Covers, and LargeBlindCovers must stand at least this pressure. A first solution to
problem would be to introduce a mixin type PressureClassified which declares a p
erty maxPressure and uses theenclosingmechanism to compared it with the operating
Pressure property of PHE. However, it is quite possible that we would like to reuse
InspectionCover and LargeBlindCover types when modelling another product,
example a spiral heat exchanger (SHE). In that case, these types would appear
context of a SHE component, and the maxPressure should instead be compare
the operatingPressure property of SHE. The solution is to introduce a mixin P
sureVessel which is inherited by both PHE and SHE as shown in Fig. 8. The mi
PressureVessel and PressureClassified operate as a pair. They model the general

PressureVessel

opPrs: PressureProperty

PressureClassified

maxPrs: PressureProperty
self .maxPrs >= enclosing (PressureVessel).opPrs

Fig. 8. Use of mixin pairs

PHE

FramePlate

SHE

PressurePlate InspectionCover LargeBlindCover
12

hed to
r any

sy to
gen-
nt

of
and

ork-
mpo-
cing
type
e the
ties
parts.
rod-

miza-
sign

of
s a

m-
s actu-
ties
any
op-
This
igners

all
the

p-
full

s
tion.
al or
ited,
ior of having a pressure vessel with an operating pressure, and components attac
it are classified to stand at least that pressure. The mixin pair can then be reused fo
product exhibiting this general behavior.

5 Discussion

OPG is aimed at obtaining descriptions which are small, highly readable, and ea
evolve and reuse; to obtain a high degree of checkability; and to allow automatic
eration of efficient interactive configuration tools. We will now discuss differe
aspects of OPG and how it contributes to these goals.

Architecture. The proposed architecture which is divided into the three levels
types, prototypes, and configuration, supports the different phases in the design
configuration process. Product designers define a family of related products by w
ing at the type level. The prototype level describes the different mass-produced co
nents. The type level serves as an interface for defining new prototypes, pla
requirements on what physical and other external characteristics the new proto
must possess. If values can be set for these properties, it will be possible to defin
prototype and use it in future configurations. Typically, these prototypical proper
will serve as requirements on subcontractors manufacturing the mass-produced
Sales engineers work at the configuration level, defining how actual customized p
ucts are configured from mass-fabricated parts. This architecture fits mass-custo
tion problems like e.g. plate heat exchangers. For other kinds of products the de
may be more intertwined with configuration, e.g. as indicated in [15].

Checkability. The three-level architecture allows a clear definition of what kinds
validity can be checked at each level. At the type level, the type system itself allow
basic validity check, similar to the compile-time checking of strongly typed progra
ming languages like Pascal and Java, e.g. making sure that all accessed propertie
ally exist (i.e. that they are declared). The AG-inspired use of derived proper
furthermore allows checking if the derived properties are well-defined, i.e., that for
possible configuration, there will be exactly one defining rule for each derived pr
erty, thus avoiding under- or overdetermination with regards to derived properties.
is an important aspect because it supports early error checking and can make des
more confident they have designed a consistent model.

At the prototype level, it is possible to check if the prototype is complete, i.e. if
prototypical properties are given values. It is also possible to do a partial check on
validity of the prototype, by checking validity rules which use only prototypical pro
erties of the (compound) prototype. At the configuration level, it is possible to do
validity checking by checking if all validity rules are satisfied.

Interactive Configurator Tools. As described earlier, the AG technology allow
efficient interactive configurator tools to be generated from the type-level specifica
Such tools can support structure-oriented editing of configurations (using graphic
textual editing techniques) and can check the validity as the configuration is ed
13

one
alu-

en-
he

y
ast to
se of
ts in
ction
and

heat
ome
s for

ing
lid
con-
ati-
e to
figu-
tion

m-
in a

ce-
the
the

ion.

r
that
n the
lems
y be
using incremental attribute evaluation techniques. The validity checking can be d
very efficiently by AG evaluation techniques, making use of statically computed ev
ation plans (tables computed at tool generation time). It is important that the increm
tal evaluation is efficient in order to allow an interactive construction of t
configuration, giving immediate feedback on possible rule violations.

Readability and Reusability. All rules in OPG are local to a component and ma
access properties of other components relative to that component. This is in contr
the global “for all” rules which often are used in knowledge-based systems. Becau
the implicit identification of the component itself, subcomponents, and componen
its context, local rules are usually much easier to understand. As discussed in se
4.3, a high degree of reusability is obtained through the combined use of mixins
theenclosing mechanism.

5.1 Future work

We have used OPG successfully to model the mechanical configuration of plate
exchangers, resulting in a specification of 26 main types, 7 mixins, and 32 rules. S
aspects which are not supported currently in OPG, but which are interesting topic
future research include the following:

Support for Valid Choices. The AG-based model immediately supports onlycheck-
ing the validity of a configuration. It is also desirable to support the user inconstruct-
ing a valid configuration. The user builds a configuration by successively add
components, and at any time, the current partial configuration will limit the va
choices for remaining components. The configurator should have support for
structing valid configurations by presenting only the valid choices, and for autom
cally adding components when there is only one valid choice. It is also possibl
automatically complete a partial configuration using default components and con
ration properties. We plan to add such support by formalizing the choice-genera
framework used in CAS 2000 and integrate it into the OPG model.

Support for Graphs. OPG supports only configurations organized as a tree of co
ponents. In general, one would like to support also graphs. We plan to support this
similar way as is done in Door attribute grammars [10], i.e., by introducing referen
valued derived properties. This allows an arbitrary connection between two of
components in a tree to be set up using derived properties, thus in effect turning
tree into a graph. Rules can then access properties directly along such a connect

Support for Versioning. A product family is usually not constant, but evolves ove
time and the descriptions should be subject to revision control. It is very important
existing type-instance and prototype-copy relations are not made inconsistent whe
types and prototypes evolve. These problems are similar to schema evolution prob
in object-oriented data bases, see e.g. [21], and similar techniques will probabl
useful for product models.
14

sed
le fea-
er of
duct,
d on
ts are
AS
ndle
plex

gura-

d in
ndi-

ropa-
ghly
ame-

the
le

mits
ped

n
lism

is
cution
rt for
ete
sys-
14].

rule-
iffer-
ffi-

nted
is for
cally
rative
6 Related Work

6.1 Product Configurator Tools

Table-Based Tools.Many simpler hand-coded configurator tools use a table-ba
approach. In these systems, each base product has a table which lists its availab
tures. A product is specified by choosing a base product and then adding a numb
features. When two features are not allowed to be combined for some base pro
this combination is listed in another table, a conflict table. This approach is base
the assumption that features are highly independent of one another so that conflic
rare. At Alfa Laval Thermal, this technique was used in the first version of CAS (C
1), developed in 1988. A drawback with the table based approach is that it can ha
only quite simple dependencies between product components. To allow more com
dependencies it is necessary to have some kind of rule concept which allows confi
tion rules to be expressed over the components and their properties.

Framework-Based Tools.Another approach to configuration systems is theobject-
oriented frameworkapproach. Here the components of a configuration are modelle
an object-oriented manner. All configuration rules are described as matching co
tions between attributes of the objects, and the logic is implemented by change p
gation rules. By ensuring that these rules define uni-directional chains, a hi
efficient change propagation mechanism can be implemented in the generic fr
work. The actual rules for a specific product are then expressed by extending
framework with hand-written code. As a result the model is fairly maintainab
although there is a translation step from domain experts to programmers which li
verifiability. This approach is used in Alfa Laval's current CAS 2000 system develo
in 1992 [1].

Knowledge-Based Tools.We differ between simplerrule-basedsystems and more
advancedconstraint-basedsystems.Rule-basedconfiguration systems are based o
logic programming and use a technology similar to expert systems. The forma
allows all the relevant rules to be stated explicitly, and the order of evaluation
decided by a general purpose inference engine which thereby determines the exe
logic. Rule-based systems are declarative, but they often have only limited suppo
modularization. Typically, they work in a non-interactive mode, computing a compl
configuration from user requirements. An example of a rule based configuration
tem is the seminal XCON (or R1) system for configuration of computer systems [

An evolution of the rule-based systems are theconstraint-basedsystems. Con-
straint-based systems typically have two major advantages over conventional
based systems. Firstly, different kinds of resolution strategies can be applied to d
ent kinds of constraints which can give significant improvements in execution e
ciency. Secondly, constraints are usually defined in some kind of object-orie
model of the product. The classes in an object-oriented model gives a natural bas
modularization so that large models can be structured in a way that make them lo
understandable. Constraint-based configurators thereby achieve both decla
15

cent
tion,

on a
hen
flex-
n-
tool
s. In
s.
van-
sive

be re-
ving

his
utes
ge-

ata
nu-

pe-
D-

an-
chi-

re
be

ura-
the

for-
xam-

an
odel

odel-
ities,

one
ier-

rties.
expression of configuration logic and a natural modularization of the model. Re
constraint-based tools such as OBELICS [3] also support interactive configura
allowing the user to interactively select key components.

Comparison. A weakness of knowledge-based systems is that they are based
dynamically determined execution order. For hard configuration problems, i.e., w
the configurator has to optimize over a large space of possible configurations, the
ibility and possibilities for global optimizations outweighs the drawbacks. Many co
figuration problems, however, are not hard. What is important is instead that the
can be highly interactive and give immediate feedback on what the user select
other words, the system should be highly supportive of running “what-if” scenario

OPG’s attribute grammar approach presented in this paper combines the ad
tages of declarative statement of optimized execution efficiency and highly respon
interactive support. As the user changes the configuration, dependent rules can
evaluated incrementally according to a statically determined execution order, gi
immediate feedback on the validity of the configuration.

OPG is also focused on providing early error detection in the product model. T
is supported by the strong type system and in the possibility to check that all attrib
are uniquely defined by the rules. This is in contrast to the tradition in knowled
based systems which are usually based on dynamic checking only.

6.2 Product Data Management

Product configuration modelling is one aspect in the larger context of Product D
Management (PDM) which covers all information related to product design and ma
facturing. Most PDM system in industrial use today have little functionality that is s
cific to product data. Their main emphasis is versioning of files (typically for CA
programs and word-processors) combined with work flow support and change m
agement. Usually some form of support for the bill-of-material concept, i.e.hierar
cal configurations, is also included.

PDM is slowly evolving away from this document-centric view towards mo
explicit product models. In a product model, information is structured so that it can
easily processed by different kinds of software tools, for example product config
tors. When needed, various kinds of documents can be derived automatically from
model.

Product modelling technology is often based on some kind of object-oriented
malism with mechanisms for describing properties and rules. The most notable e
ple here is the EXPRESS language [17] created by the STEP initiative which is
ongoing effort to create an international standard for the exchange of product m
data.

On the surface, OPG is similar to EXPRESS because they are both product m
ling languages with constructs like classes, properties, and rules (called ent
attributes, and rules in EXPRESS). However, there are many differences, the main
being that OPG explicitly supports an attribute grammar model with a component h
archy (abstract syntax tree) and upwards and downwards derived prope
16

s and
lidity
fica-
tion.

hese
elling
erac-
SS

y for
these

cific
. An
ost
ns

, and
po-

lat-
ents

eral
s of
ura-
ith
ver,
ins.
iants
oto-
t in
ction
and
ompo-
CM,

f their
sys-
ules
nd its

ev-
tc. In
EXPRESS supports upwards derived properties, but downwards derived propertie
the use of properties in enclosing classes would have to be simulated by using va
rules and explicit specification of enclosing components, leading to complex speci
tions not suited for AG processing and less suited for reuse and early error-detec
Furthermore, OPG has explicit support for prototypes whereas in EXPRESS t
would have to be simulated by subclasses. To summarize, OPG is a product mod
language suitable for mass-customization products and for the generation of int
tive configuration tools. It would, however, be possible to translate OPG to EXPRE
in order to make OPG specifications available to EXPRESS-based tools.

6.3 Software Configuration Management

Configuration management techniques have been developed independentl
mechanical products and software products, and it may be interesting to compare
different problems and techniques.

In both cases, there is a configuration problem, i.e. a problem of selecting spe
components to form a complete product which is internally consistent in some way
overview of Software Configuration Management (SCM) systems is given in [5]. M
SCM systems areversion-oriented, where each component exists in several versio
organized asvariants (alternative versions) andrevisions (consecutive versions).
Often, the component set making up the product is predefined, e.g. in a makefile
the central configuration problem is to select a suitable version for each of the com
nents, typically in order to configurate a product suitable for a given execution p
form. In OPG, the central configuration problem is instead to select which compon
make up the product.

A fundamental difference is that a component in OPG may occur in sev
instances in the product, e.g. the PHE configuration in Fig. 3 contains 4 instance
Lining. In SCM, on the other hand, a component appears at most once in the config
tion. In some SCM systems, the definition of the component set is intertwined w
version selection, resulting in a configuration process more similar to OPG. Howe
the fundamental difference concerning multiple/single component instances rema

The types and prototypes in OPG may be compared with components and var
in SCM: prototypes may be seen as different variants of their type. In OPG, the pr
types of a type differ in their property values. Similarly, the variants of a componen
SCM are often characterized by attributes or features [6, 22]. However, the sele
rules work quite differently. In OPG, the rules are localized to the components
check consistency between a component and its enclosing components and subc
nents, e.g. checking that a Lining has the same diameter as its enclosing Hole. In S
the rules are usually global and used to select component variants regardless o
context, e.g., selecting the Unix variant of all source module components in the
tem. One SCM system which does make use of local rules is DCDL [18] where r
are part of class definitions and can check consistency between a component a
subcomponents.

Revision control is central in SCM: within a component variant, there may be s
eral consecutive revisions which can be attributed with date, release number, e
17

that
ision
elled
are

od-
, but
man-
t to
n-

n be

will
the

like
nits
m-

blem
or
ent.

f-con-
uto-
r to
for-
un-
that

of
e it
and
ing

zed
e is
ced
oth a
n of
contrast, each OPG variant (prototype) exists in only one version. The reason is
the physical components modelled by prototypes are not seen as being in a rev
relation: either they are completely interchangeable, in which case they are mod
by the same prototype; or they differ in some property values, in which case they
modelled by different prototypes. Typically, different physical components are m
elled by the same prototype if they are manufactured by different subcontractors
have the same function in the product, and which actual component is selected at
ufacturing is irrelevant to the customer. Revision control is, however, highly relevan
OPG at itsmeta level, i.e. when specifying OPG types and prototypes in order to ge
erate a configuration tool. These specifications are evolving software which ca
placed under revision control, as noted in section 5.1.

The current trends in software architecture of using component technology
give rise to new configuration problems in software which have similarities to
mass-customization problems treated by OPG. As interconnection standards
COM, CORBA, and Java Beans are coming into wide use, the granularity of the u
of deployment is decreasing. Monolithic applications are giving way to a larger nu
ber of more or less independent components, moving the main configuration pro
from build-time to install-time, or even to launch- or run-time. The responsibility f
building correct configurations is thereby separated from component developm
This separation must then be compensated by the components being more sel
tained. When delivered, they must contain sufficiently rich meta-data to enable a
matic generation and/or validation of correct configurations. The problem is simila
that of product mass-customization, and it is possible that product configuration
malisms like OPG can play a role here. The SCM system DCDL [18] is aimed at r
time configuration problems, and as noted above it has some similarity to OPG in
it also supports local rules.

7 Conclusions

OPG is a product modelling language which is primarily aimed at configuration
highly customized products built from mass-produced components. We believ
shows the benefits of basing configuration technology on object-orientation
attribute grammars. This combination gives strong modelling capabilities, allow
configuration constraints to be expressed and understood locally. Theenclosingmech-
anism and the use of mixin pairs in particular allows the model to be highly factori
so that redundant information is avoided. The type-prototype-copy architectur
introduced to match the different levels of product component type, mass-produ
component, and actual component. The use of attribute grammars gives OPG b
theoretical basis for early validation and techniques for the automatic generatio
efficient interactive configurator tools.

References

1. Alfa Laval Thermal AB.CAS 2000. User’s Manual. Lund, Sweden, 1993.
18

t-

e

sys-

for
.
n-

con-

ign

d da-
2. K. Arnold and J. Gosling.The Java Programming Language. Addison-Wesley. 1996.
3. T. Axling and S. Haridi. A tool for developing interactive configuration applications.Journal

of Logic Programming 26(2): 147-168 (1996).
4. G. Bracha and W. Cook. Mixin-Based Inheritance. OOPSLA/ECOOP’90.ACM SIGPLAN

Notices, Vol. 25, No 10, pp. 303-311. 1990.
5. R. Conradi and B. Westfechtel. Configuring Versioned Software Products. InSoftware Con-

figuration Management, ICSE’96 SCM-6 Workshop. pp 88-109. LNCS 1167, Springer-Ver-
lag. 1996.

6. J. Estublier and R. Casallas. The Adele Configuration Manager. In Tichy (Ed.)Configuration
Management, Wiley, 1994.

7. E. Gamma, R. Helm, R. Johnson, J. Vlissides.Design Patterns. Elements of Reusable Objec
Oriented Software. Addison-Wesley. 1995.

8. G. Hedin. An object-oriented notation for attribute grammars.ECOOP’89. BCS Workshop
Series, pp 329-345, Cambridge University Press. 1989.

9. G. Hedin. Context-sensitive editing in Orm. Proceedings of theNordic Workshop on Pro-
gramming Environment Research. Tampere University of Technology, Finland. Softwar
Syst. Lab. TR 14. 1992.

10. G. Hedin. An overview of Door attribute grammars.International Conference on Compiler
Construction (CC’94). LNCS 786, Springer Verlag. 1994.

11. U. Kastens and W. M. Waite. Modularity and Reusability in Attribute Grammars.Acta Infor-
matica, 31:601-627, 1994.

12. D. E. Knuth. Semantics of context-free languages.Mathematical Systems Theory, 2(2):127-
145, June 1968.

13. H. Lieberman. Using prototype objects to implement shared behavior in object oriented
tems. In OOPSLA’86, pp 214-223.ACM SIGPLAN Notices,Vol. 21, No. 11, September
1986.

14. J. McDermott. R1: A Rule-Based Configurer of Computer Systems.Artificial Intelligence,
Vol. 19, 1 (Sept 1982):39-88.

15. H. Peltonen, T. Männistö, K. Alho, R. Sulonen. Product Configurations - An Application
Prototype Object Approach. InECOOP’94, pp 513-534. LNCS 821, Springer Verlag. 1994

16. T. W. Reps and T. Teitelbaum.The Synthesizer Generator. A system for constructing la
guage-based editors. Springer Verlag. 1989.

17. D. Schenck and P. Wilson.Information Modeling the EXPRESS Way. Oxford University
Press. 1994.

18. B. R. Schmerl and C. D. Marlin. Versioning and consistency for dynamically composed
figurations. InSoftware Configuration Management, ICSE’97 SCM-7 Workshop. pp 49-65.
LNCS 1235, Springer-Verlag. 1997.

19. J. J. Shah and M. Mäntylä.Parametric and Feature-Based CAD/CAM. Wiley. 1995.
20. Taligent Inc.Taligent’s guide to designing programs - well-mannered object-oriented des

in C++ . Addison-Wesley. 1994.
21. A. H. Skarra and S. B. Zdonik. The management of changing types in an object-oriente

tabase. In OOPSLA’86, pp 483-495.ACM SIGPLAN Notices,Vol. 21, No. 11, September
1986.

22. A. Zeller and G. Snelting. Handling Version Sets Through Feature Logic. InSoftware Engi-
neering - ESEC’95. pp 191-204. LNCS 989. Springer-Verlag. 1995.
19

	1 Introduction
	2 Plate Heat Exchangers
	3 The OPG Configuration Model
	4 Elements in OPG
	5 Discussion
	6 Related Work
	7 Conclusions
	References

