
Department of Computer Science

Lund Institute of Technology
Lund University

Box 118, S-221 00 Lund, Sweden

Enforcing programming conventions by attribute extension
in an open compiler

Görel Hedin

LU-CS-TR:96-171
LUTEDX/(TECS-3068)/1-18/(1996)

Also published in: Proceedings of NWPER’96, Nordic Workshop on
Programming Environment Research, L. Bendix, K. Nørmark,

and K. Østerbye (eds), Aalborg, Denmark, May 1996.
Aalborg University, Technical Report R-96-2019.

1

Enforcing programming conventions by
attribute extension in an open compiler

Görel Hedin

Dept of Computer Science, Lund Institute of Technology
Box 118, S-221 00 Lund, Sweden
e-mail: Gorel.Hedin@dna.lth.se

Abstract. A problem in supporting reusability of libraries and frame-
works is that the programming conventions which need to be followed
are only informally described. Safer reuse would result if these conven-
tions could be enforced, preferably at compile time. This paper suggests
a technique for this by means of an extensible attribute-grammar
based compiler.

Keywords: application languages, extensible languages, reusability, frame-
works, object-oriented programming, attribute grammars, open compilers.

1 Introduction

Libraries as language extensions
One of the most important ways to obtain reuse in software development is to
construct reusable libraries of program components. A library can be thought of
as an application-oriented language, because abstraction mechanisms such as
classes and procedures allows the modelling of application-specific concepts. In
object-oriented frameworks this idea is taken even further by embedding also
the main application behavior in the library, thus making the library more of an
extensible application than an application subcomponent.

User interface frameworks such as MacApp and the Smalltalk Model-View-
Controller (MVC) made OO frameworks widespread and recognized as a power-
ful reuse technique [JF88], but the idea of OO frameworks dates back to Simula
with class Simulation which provided an object-oriented framework for discrete
event simulation. The view of OO programming as a language-extension tech-
nique was explicitly stated as one of the main points in Simula, where one can
read the following in the preface of the language definition [DMN68]:

“A main characteristic of SIMULA is that it is easily structured towards
specialized problem areas, and hence can be used as a basis for Special
Application Languages.”

In the following, we will use the term library to cover ordinary procedural
libraries, class libraries, and object-oriented frameworks. A problem with reus-
ing libraries is that the programming conventions which need to be followed in
order for the library to work properly, are only informally described (if they are
described at all). Robust libraries may include run-time checking of some of the

2

conventions, but it is usually not possible to add run-time checks for all possible
convention violations. The result is that convention violations lead to run-time
errors, often occurring deep within the libraries, and which are very difficult for
the application programmer to understand and debug.

Library-specific static-semantic checks
The goal of this paper is to pursue the idea of a library as a language even fur-
ther by allowing library-specific static-semantic checking to be added to a base
language. We suggest a way of specifying such checks and of how to extend an
open compiler to perform these checks. Our technique allows more errors to be
caught, errors are caught earlier (at compile-time rather than at run-time), and
they are associated to relevant points in the program.

We have chosen to allow extension only of static-semantic checks, but not
extension of the context-free syntax, or changing the static- or dynamic seman-
tics of the base language. Thus, any program accepted by the extended compiler
will also be accepted by an ordinary base language compiler and will produce
the same dynamic behavior. This has several advantages. In particular, the
application programmer can take full advantage of production-quality base lan-
guage compilers and other tools (e.g. debuggers), and does not need to learn any
new syntax. To also allow extension of base language syntax and semantics
could make it easier to specify the library-specific checks, and could make appli-
cation programming more convenient. However, we believe there is a large set of
problems where the advantages of keeping compatible with the base language
outweighs the advantages of defining application-specific syntax.

The syntax and semantics of the base language has a paramount influence
on how difficult it is to specify the library-specific checks. Our approach will
work best with a statically typed object-oriented base language such as Simula,
BETA, Eiffel, C++, or Java. With a statically typed language we mean a lan-
guage where named entities (variables, classes, methods, etc.) have compile-
time types1. This gives a basic semantic framework necessary for being able to
add library-specific checks. Our approach would also be useful for procedural
languages, but it is more attractive to use an object-oriented language which
requires less programming conventions in the first place.

In this paper, we focus on enforcing library-specific conventions. However,
the technique for adding user-specified semantic checks is also appropriate for
enforcing general programming style conventions, or programming “laws” such
as the “law of Demeter” [LH89], and similar restrictions on how the base lan-
guage should be used.

Attribute extension
The implementation technique we propose is to build an open compiler which
makes the static-semantics of a base language program available as an attrib-
uted syntax tree, specified in an object-oriented form supporting reference and
collection-valued attributes, by means of Door Attribute Grammars (a space-
efficient declarative representation, initially intended for efficient incremental

1. The compile-time types allow most type checking to be done at compile time. However,
the compile-time types are often less precise than the run-time types, and some type-
checking may therefore need to be done at run time.

3

attribute evaluation) [Hed92, Hed94]. The open compiler supports attribute
extension by allowing additional attributes and equations to be added to the lan-
guage specification, and by allowing programs in the base language to be anno-
tated with user-specified attribute values.

Paper organization
The rest of this paper is organized as follows. In section 2 we give an example of
a monitor library, illustrating how the choice of base language can affect the
number of programming conventions which need to be enforced. In section 3 we
describe the attribute extension mechanism and the architecture of an open
compiler enabling such extensions. In section 4 we show the specification of a
simple extension using this technique. Section 5 relates our approach to other
techniques for language extension. Section 6 summarizes the results and dis-
cusses possibilities for further research.

2 The monitor example

A monitor is a class or abstract data type where special entry procedures guar-
antee mutually exclusive access to data in the class/ADT instance. In this sec-
tion we will look at how a monitor construct can be simulated by a library, what
programming conventions need to be followed for the monitors to work correctly,
and how the base language influences the level of support.

2.1 A procedural approach

The basic functionality needed for a monitor can be realized by a procedural
library, given in figure 1. (This interface is a simplified version of a teaching
package for concurrent programming used at Lund Institute of Technology.)

When using this library, the following conventions should be followed:

• A monitor variable instance should be placed in the record holding the
data protected by the monitor.

• Access to the protected data should be done only via entry procedures.
These procedures should be realized by ordinary procedures which have a

type record MonitorVariable ... (* a kind of semaphore *)

procedure InitMonitor (M: ref MonitorVariable) ...
(* Initializes the monitor variable *)

procedure EnterMonitor (M: ref MonitorVariable) ...
(* Waits until the monitor is free, then enters it (locks it) *)

procedure ExitMonitor (M: ref MonitorVariable) ...
(* Leaves the monitor (unlocks it). Also causes processes awaiting change to be put on

queue for entering the monitor. *)
procedure AwaitMonitorChange (M: ref MonitorVariable) ...

(* Leaves the monitor and waits until some other process has visited the monitor. Then
enters the monitor again. *)

Figure 1 Procedural library for basic monitor functionality

4

call to EnterMonitor as their first statement and ExitMonitor as their last
statement.

• Conditional entry of the monitor should be programmed by a statement
while condition do AwaitMonitorChange(M);

as the second statement in the entry procedure.
• A call to InitMonitor must be made before any call to an entry procedure for

the monitor.

Figure 2 outlines an example application program with a FIFO bounded buffer
monitor which follows the above conventions.

Even if we assume that the application programmer is cooperative and tries to
follow the conventions, there are several mistakes which are easy to do and
which lead to severe errors:

• Omission of a call to EnterMonitor may lead to unsynchronized updates of
the buffer, leading to inconsistencies and to run-time errors at completely
different places in the program.

• Access to monitor data outside of an entry procedure gives similar errors.
• Omission of a call to ExitMonitor may lead to deadlock.
• Calls to AwaitMonitorChange outside an entry procedure will lead to a run-

time error.
• Omission of the call to InitMonitor will lead to a run-time error in the first

call to EnterMonitor.

(* monitor *) record type FIFOMonitor
M: ref MonitorVariable;
BB: ref BoundedBuffer;

end record type;

(* init *) procedure InitFIFO (B: ref FIFOMonitor);
B.M :- new MonitorVariable;
InitMonitor(B.M);
B.BB :- new BoundedBuffer;
InitBuffer(B.BB);

end procedure;

(* entry *) procedure put (B: ref FIFOMonitor, E: ref Element);
EnterMonitor (B.M);
(* condition *) while BoundedBufferFull(B.BB) do AwaitMonitorChange(B.M);
BoundedBufferAddAsLast(B.BB, E);
ExitMonitor (B.M);

end procedure;

(* entry *) ref Element procedure get (B: ref FIFOMonitor);
EnterMonitor (B.M);
(* condition *) while BoundedBufferEmpty(B.BB) do

AwaitMonitorChange(B.M);
return BoundedBufferRemoveFirst(B.BB);
ExitMonitor (B.M);

end procedure;

Figure 2 Procedural application program containing a FIFO monitor

5

An additional problem is that it is possible to use the library without following
the conventions, and still get a program which works, but which is very difficult
to read and maintain. For example, by placing the monitor variable somewhere
outside the monitor data record, or by placing the EnterMonitor and ExitMonitor
calls at the entry procedure call sites rather than inside the entry procedures.

2.2 An object-oriented approach

By using an object-oriented language, the primitive monitor operations can be
encapsulated in an abstract class Monitor, and the application program can
define specialized monitors by creating subclasses to Monitor. This provides a
simpler interface and a much nicer application program structure than in the
procedural case, as seen from figures 3 and 4. In particular, the existence of the
monitor variable and the monitor initialization is completely hidden from the
application programmer.

In the object-oriented solution, fewer programming conventions are needed
than in the procedural case. Note, however, that the application programmer is
still required to follow the conventions of adding Enter, Exit and AwaitChange
calls at the appropriate places in the entry methods.

The realization of the monitor construct as a class gives a syntactic relation
between the entry methods, the monitor variable, and the protected data. This
makes the remaining programming conventions easier to describe and specify
than in the procedural case.

class Monitor
method Enter ...
method Exit ...
method AwaitChange ...

end class;

Figure 3 Library for abstract monitor class

class FIFOMonitor extends Monitor
BB: ref BoundedBuffer :- new BoundedBuffer.init;

(* entry *) method put (E: ref Element)
Enter;
(* condition *) while BB.Full do AwaitChange;
BB.AddAsLast(E);
Exit;

end method;

(* entry *) ref Element method get
Enter;
(* condition *) while BB.Empty do AwaitChange;
return BB.RemoveFirst;
Exit;

end method;
end class;

Figure 4 Object-oriented application program containing a FIFO monitor

6

2.3 A refined approach using submethoding

We can do even better by using an object-oriented language which supports sub-
methoding as well as subclassing, as present in BETA [MMN93]. A submethod
extends another method in the following way: The supermethod may contain a
statement inner which causes the code of the submethod to be executed. The
inner construct originates from Simula where it is used in class bodies. The idea
of submethods was also proposed in [Vau75] where monitors was one of the prin-
ciple examples used. The use of subclassing and submethoding for modeling
monitors is also treated in [LM81] and [MMN93].

Figure 5 and 6 illustrate how submethods can be used in the class library to
encapsulate the calls to Enter and Exit in an abstract method Entry. In the exam-
ple, we also make use of unlimited block structure (as present in Simula and
BETA) and declare the condition as a virtual method Condition within the
abstract method Entry. This allows us to encapsulate also the while loop with the
call to AwaitChange within the method Entry. In the application program, the
Condition method is overridden with the appropriate actual condition in the sub-
methods.

By using this powerful base language we have actually managed to encapsulate
most of the programming conventions in the library. However, there are still a
few conventions which could be useful to express using library-specific semantic
checks. For example:

class Monitor
method Entry

boolean virtual method Condition
return false;

end method;

Enter;
while Condition do AwaitChange;
inner;
Exit;

end method;
end class;

Figure 5 Class library with abstract method

class FIFOMonitor extends Monitor
BB: ref BoundedBuffer :- new BoundedBuffer.init;

method put extends Entry (E: ref Element);
method Condition return BB.Full end;
BB.AddAsLast(E);

end method;

ref Element method get extends Entry
method Condition return BB.Empty end;
return BB.RemoveFirst;

end method;
end class;

Figure 6 Object-oriented application program using submethoding

7

• In subclasses to class Monitor, submethods of Entry are the only features
which may be accessed from other objects.

By enforcing the above convention one can avoid that the application program-
mer unintentionally forgets to specify an entry method as a submethod of Entry.

2.4 Summary

We have seen in this example how the choice of base language dramatically
influences the number of programming conventions which need to be followed
by an application programmer. However, even a very advanced language like
BETA can not encapsulate all programming conventions. Library usage can still
be made safer by adding library-specific checks. We have also seen that by using
an object-oriented language, the structure imposed by the class abstractions
makes it easier to express the programming conventions.

3 Attribute extension

3.1 Door Attribute Grammars

To do library-specific static-semantic checking, a checker knowledgeable of the
library-specific rules should be run on each application program using the
library. Implementing such a checker from scratch for each library would be a
large task, since it would need to redo much of the name and type analysis for
the base language in order to proceed with the library-specific checks.

Instead, it is desirable to have an extensible tool which performs name- and
type analysis for the base language, and to which library-specific checks can be
easily added. When running the tool on a given application program, the checks
for each of the used libraries should be performed by the tool.

Our approach is to build the extensible tool using Door AG technology. A
Door AG [Hed92, Hed94] is an extension of standard attribute grammars which
allows references and collections of references to be specified as part of a syntax
tree attribution. This allows a name use site to be connected to its name decla-
ration site, and conversely, a name declaration site to be connected to all its use
sites. For object-oriented languages, subclasses can be connected to superclasses
and vice versa.

The use of reference attributes to connect different parts of the syntax tree
depending on the static-semantics, obviates the large “environment” attributes
normally used in attribute grammars. New attributes can easily be added and
propagated along the reference attribute connections without needing to change
existing attributes. For example, a new attribute can be added to the class con-
struct, and propagated to all subclasses by means of a single equation. (An
equation defines the value of an attribute in terms of other attributes.) Doing
the equivalent in a standard attribute grammar would require changing or add-
ing many large environment attributes.

Another advantage of Door AGs is that they are based on object-oriented
attribute grammars where nonterminals and productions are modelled as node

8

classes [Hed89]. A standard AG with nonterminals and productions corresponds
to an OO AG with a two-level class hierarchy: each nonterminal is a superclass
of its production subclasses. By using the full power of OO AGs, class hierar-
chies of any level can be constructed, and attributes and equations are inherited
(in the object-oriented sense) from superclasses to subclasses, and equations in
subclasses can override equations in superclasses. This makes it easy to define
general behavior applying to many node classes without having to clutter the
grammar with many similar attribute declarations and equations, as is a nor-
mal problem with standard AGs.

3.2 Specification of library grammar units

With attribute extension we mean the technique for extending a base language
Door AG with additional attribute declarations and equations. Figure 7 depicts
how a base language Door AG is extended with library-specific grammar units.

A library grammar unit adds attribute declarations and equations defining
those attributes to the node classes of the base language. The equations may
make use of attribute values in the base language grammar, and also in other
library grammar units.

Currently, we are considering only allowing standard AG attributes (value
attributes) to be defined in the library units, i.e. disallowing the definition of
new reference attributes or collections. However, reference attributes and collec-
tions in the base language grammar may be accessed freely by the equations in
the library unit. For most library units, we think it is sufficient to be able to
define value attributes, since the complex name analysis is done already in the
base language grammar. This restriction allows us to use a simple evaluation
technique for the library units, as will be discussed in section 3.3.

Program-defined attributes
To allow a given application program to control the values of individual
attribute instances, the notion of program-defined attributes is introduced. A
program-defined attribute is a local attribute which has an equation defining its

B

L1 L3L2

L4

B Full functionality Door AG
for base language

L Library grammar unit
containing value attributes
and equations

Use of attribute values

Figure 7 Extension of Door AG by library grammar units

9

value, just like other attributes. In addition, it is possible to override this defini-
tion by annotating the program with program-defined equations. A program-
defined equation is attached to a specific language construct instance in the pro-
gram and will override the corresponding equation given in the library gram-
mar unit for that particular language construct instance.

For specifying program-defined equations we will use structured comments
with the following syntax:

(** attribute = literal-value **)

where literal-value is a literal value of a primitive type, for example a literal
boolean value (true or false), a literal numerical value (1, 2, 3, ...), or a literal text
value.

As an example, consider the object-oriented monitor library in section 2.2.
Here we wish to model the concept of an entry method by attaching a boolean
attribute entry to the production Method in the base language:

addto Method {
progdef entry: boolean;
equation entry = false;

};

This specification says that the default value of entry is false for each method. In
the application program using the monitor library, the entry attribute can be
given the value true for individual methods in the application program as fol-
lows:

(** entry = true **) method put (E: ref Element) ...
(** entry = true **) ref Element method get ...

Because it is very common for program-defined attributes to be boolean, we will
allow the program-defined equations for such attributes to be abbreviated to
simply the name of the attribute, meaning that the attribute is defined to true.
Thus, the following specification is equivalent to the one above:

(** entry **) method put (E: ref Element) ...
(** entry **) ref Element method get ...

Error attributes
The “output” of a library grammar unit is a set of error messages attached to
language constructs in the application program using the library. To support
this we introduce the notion of an error attribute. An error attribute is a string-
valued attribute which should be given an appropriate error text as value if
there is a library-specific error, and the empty string-value otherwise.

For example, to check that an entry method contains a call to Enter as its first
statement we could add an error attribute missingEnter to the language con-
struct Method as follows:

10

addto Method {
error missingEnter: string;
equation missingEnter =

if entry and not (first statement is a call to Enter)
then “Missing call to Enter”
else “”:

};

Access to specific named entities
In writing the specification of the library-specific checks, we need to be able to
refer to particular named entities in the library. For example, in defining the
error attribute missingEnter above, we need to refer to the method Enter to check
if the first statement of an entry method is actually a call to Enter.

One way of supporting this is to define an attribute globalname for each
named entity construct. For example, the global name for the Enter method
could be MonitorLib:Monitor:Enter, where MonitorLib is the name of the library
containing the Monitor class. Since most library-specific checks will need to refer
to named entities, it is most convenient if the global name attributes are defined
in the base language grammar.

Using global names, the equation defining the error attribute missingEnter
above could be defined more precisely as follows:

equation missingEnter =
if entry and not

(Body.globalnameOfFirstStatement = “MonitorLib:Monitor:Enter”)
then “Missing call to Enter”
else “”:

where “Body” is the body component of the method construct, and globalnameOf-
FirstStatement is a synthesized attribute of Body which is the global name of the
method called in the first statement of the body, or the empty string if the first
statement is something else than a method call.

3.3 Design of the attribute extension tool

We are currently only in the initial stage of an actual implementation of an
attribute extension tool, and will here only outline our design of it. We intend to
implement the attribute extension tool as a part of our generic incrementally
compiling environment, Orm [MHM+90].

The Orm system
The Orm system maintains a complete attribution of the program, with name
bindings, type information, and error messages. Static-semantic checking is per-
formed incrementally, by updating the attribution after each single edit step
(such as insert/remove declaration/statement). Incremental feedback on static-

11

semantic errors are given after each such edit step by highlighting the errone-
ous constructs.

In implementing attribute extension, it would of course be desirable to also
have incremental updating of library-specific errors, in the same way as for base
language errors. However, implementation of the incremental updating can cur-
rently not be done completely automatically for Door AGs, so initially, we will
use a variant of exhaustive evaluation for the library-specific checks. This way,
the implementation of the evaluator for the library grammar units can be done
completely automatically.

The base language grammar will be evaluated incrementally, just as in the
existing Orm system. In addition, the user will be able to invoke library-specific
checking by a menu command, at which point the exhaustive library-specific
evaluator will be run.

The library-specific evaluator
As mentioned earlier, the library grammar units contain only standard AG ele-
ments, i.e. value attributes and their defining equations. Although the library
grammar units may access Door AG specific attributes in the base language
grammar, e.g. reference attributes and collections, we can still use standard AG
evaluation techniques for the library grammar units. This is because the
library-specific evaluation is done exhaustively for a given base language attri-
bution, which can thus be regarded as constant during the library-specific eval-
uation.

We will use a very simple technique for the library-specific evaluation,
namely an exhaustive scan over the program, evaluating each error attribute by
means of demand evaluation. In demand evaluation, an attribute is imple-
mented by a function and evaluation of the attribute is equivalent to calling the
function. Demand evaluation is very simple to implement because it requires no
dependency analysis of the attribute grammar. Because Door AGs are based on
OO AGs, the implementation of demand attributes can be done by a straight-
forward mapping from the grammar to virtual functions: a synthesized demand
attribute corresponds exactly to a virtual function, and an inherited attribute to
a virtual function with an extra argument [Hed89].

Another advantage of demand evaluation is that it requires no storage of
attribute values - an attribute value is computed each time it is needed. The
drawback of demand evaluation is that it can be extremely time-inefficient: The
call-tree for an attribute evaluation can be very large - it can in principle grow
exponentially in the size of the program. However, in the context of library-spe-
cific checks, we expect very small call-trees, for two reasons: 1) Any access to a
base grammar attribute will truncate the call-tree since the values of these
attributes are stored in the syntax tree. 2) The library-specific equations will be
quite simple since all the complex functionality of name analysis and type
checking is already present in the base grammar.

Thus, although we intend to use very simple evaluation techniques, we
expect the performance to be acceptable for practical use.

12

4 An example specification

As an example of library-specific checks, we will look at how the programming
conventions for the object-oriented monitor library of section 2.2 can be speci-
fied. The complete specification of the library grammar unit is given in the
appendix.

Base language grammar
The base language grammar contains two general node classes: Node - the
abstraction of any syntax node in a base language program, and its subclass
Descendant - the abstraction of any Node except for the root node. The rest of
the classes are subclasses of Descendant and correspond to nonterminals or pro-
ductions.

The node class Declaration models a general declaration in the base lan-
guage, and has subclasses like Class and Method. Each Declaration has an
attribute globalname, holding the global name of the declaration as discussed in
section 3.2, and a boolean attribute protected (see convention 6 below). Node
classes which access named entities, like MethodCall and SuperClass, have a ref-
erence attribute DeclBinding to the corresponding Declaration node.

The following notation for node classes is used:

NodeClass [: SuperClass] ::= [(SonNodes)] { AttributeDecls }

The specification below shows the parts of the base language grammar that are
used by the library grammar unit.

Node ::= { }
Descendant: Node ::= { }

Declaration: Descendant::= {
globalname: string;
protected: boolean; }

Method: Declaration ::= (MethodId FormalParamList OptReturnType Body) { }
Body: Descendant ::= (list of Statement) { }
Statement: Descendant::= { }
MethodCall:Statement ::= (MethodId ActualParamList) {

DeclBinding: ref Declaration; }
WhileStmt: Statement ::= (cond:Expression doPart:Statement) { }
Class: Declaration ::= (OptSuperClass ClassId MethodList) { }
OptSuperClass: Descendant ::= { }
SuperClass: OptSuperClass ::= (SuperId) {

DeclBinding: ref Declaration; }
MethodList: Descendant: list of (Method) { }

Convention 1: Entry methods are marked by (** entry **)
To follow this convention, the application program should put a structured com-
ment (** entry **) before each method declaration intended to be an entry
method. This is matched in the library grammar unit by a program defined
attribute entry in the node class Method.

13

Convention 2: First/last statement of entry method must be Enter/Exit
To follow this convention, an entry method of an application program must have
a call to Enter as its first statement and a call to Exit as its last statement. This
convention is checked by two error attributes in node class Method: missingEnter
and missingExit.

Convention 3: Enter and Exit must not occur in other positions
I.e., the methods Enter and Exit must not be called in other positions than as
stated by convention 2. To check this, two error attributes misplacedEnter and
misplacedExit are added to node class MethodCall. A boolean attribute inBody-
OfEntry, which is true if a statement is in the body of an entry method, is propa-
gated down from a Method to its body statements. For all other statements, the
attribute inBodyOfEntry is defined as false. This default specification is given in
the general node classes Node and Descendant.

Convention 4: AwaitChange must only appear in condition position
I.e., a call to AwaitChange must only occur as the do-part of a while-statement
which occurs as the second statement of an entry procedure. This is checked by
an error attribute misplacedAwaitChange in the node class MethodCall. A
boolean attribute inAwaitChangePosition, which is true if a statement is in the
correct position for a call to AwaitChange, is propagated down in a similar way
as the inBodyOfEntry attribute of convention 3.

Convention 5: Entry methods must be declared in Monitor subclass
I.e., the application program must only mark a method by the structured com-
ment (** entry **) if it is a method of a subclass to Monitor. This is checked by an
error attribute misplacedEntry in node class Method. To define this attribute,
synthesized attributes isMonitor and isMonitorSubclass in node class Class are
accessed by subclasses via the DeclBinding reference attribute connecting a sub-
class with its superclass. An inherited attribute inMonitorSubclass, which is true
if a method is declared in a subclass to Monitor, is propagated down from a class
to its declared methods in a similar way as the inBodyOfEntry attribute of con-
vention 3.

Convention 6: Non-entry methods in Monitor subclasses must be pro-
tected
I.e., if the application program declares methods other than entry methods in
Monitor subclasses, these methods must be declared as protected, i.e., not acces-
sible from outside instances of the Monitor subclass. (We assume that the base
language has such a protected mechanism, similar to the ones of Simula and
C++.) This will hinder access of data in a Monitor instance other than via entry
procedures. To check this convention, an error attribute nonProtectedNonEntry
is added to node class Method. This attribute is defined using the attribute pro-
tected present in the base language grammar, and the attribute inMonitorSub-
class defined in convention 5.

14

5 Related work

Related techniques for supporting programming conventions include run-time
assertions and language extension techniques like preprocessing and reflective
programming. However, we are not aware of any other approaches to enforcing
programming conventions by adding library-specific static-semantic checks.

Run-time assertions
Assertions were originally intended for program verification and rigorous pro-
gram construction. However, run-time-checked assertions can also be used
within a library to check that certain programming conventions are followed by
the application program using the library. This technique, often referred to as
programming by contract, is used in Eiffel [Mey88] which supports pre- and
postconditions of methods, and class invariants. In particular, method precondi-
tions can be used to check that an application program calls a library method
with appropriate parameters and in an appropriate program state. However,
many programming conventions cannot be captured by run-time assertions in
the library. For example, none of the conventions in section 4 can be checked by
assertions in the library code. On the other hand, there are also conventions
that cannot be checked by static checks, and where run-time assertions are
needed. Thus, run-time assertions and library-specific static checks complement
each other as techniques for supporting programming conventions.

Preprocessing
It is common to extend a language by defining macros which are expanded to
base language code by a preprocessor, or to define a complete application-spe-
cific language with a preprocessor which translates application programs to a
base language. Although this may be convenient for some problems, there are
also several disadvantages. Preprocessing in general has the disadvantage that
errors which occur during compile-time or run-time will be related to the
expanded code which the application programmer does not recognize. For macro
expansion there are additional problems. For example, there is no checking that
the macros are used in the intended way by the application program. Since mac-
ros usually work at the lexical level, unintended use can result in very strange
errors.

Reflective programming
In reflective programming, a program can access and manipulate a representa-
tion of its own state [Smi84]. The use of reflection in object-oriented languages
has recently received considerable attention, in particular for interpreted lan-
guages. Also for compiled languages, reflective facilities have been designed, for
example mechanisms for redefining method lookup in Smalltalk [FJ89] and C++
[CM93]. In relation to the monitor example discussed in section 2, reflection
could be used to redefine method lookup for monitor objects in order to encapsu-
late incoming messages by calls to Enter and Exit.

Similar to the use of submethoding discussed in section 2.3, reflective facili-
ties add power to a language, making certain behavior easier to program than in
a conventional non-reflective language and it may therefore simplify the needed
for programming conventions.

15

6 Conclusions and future work

In constructing programming libraries, it is usual that application programs
must obey certain programming conventions in order for the library to work cor-
rectly. As was illustrated in section 2, the base language has a dramatic influ-
ence on the needed number of programming conventions. An object-oriented
language gives much better support than a procedural language, and an
advanced concept like submethoding in BETA gives even more support. How-
ever, even with a very powerful base language, there are some conventions that
cannot be captured directly in the base language.

To extend the possibilities to enforce programming conventions, we have sug-
gested a technique of adding library-specific static checks using an attribute
grammar notation. The library-specific checks can make use of an existing base
grammar attribution, capturing name bindings and types. The use of reference
attributes in the base grammar explicitly connects named entities and makes
addition of library-specific attributes simple, avoiding the problems of large
attributes in standard attribute grammars.

We have shown how the technique can be applied to enforce the conventions
of a monitor library for an object-oriented base language.

This work is still in an initial stage, and future work includes full implemen-
tation of a tool based on the presented ideas, and more case studies on existing
libraries.

References

[CM93] S. Chiba and T. Masuda. Designing an extensible distributed language
with a meta-level architecture. Proceedings of the European Conference
on Object-Oriented Programming (ECOOP’93), Kaiserslautern, LNCS
707, pp 482-501, July 1983.

[DMN68] O.-J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA 67 common base
language. NCC Publ. S-2, Norwegian Computing Centre, Oslo, May 1968.

[FJ89] B. Foote and R. E. Johnson. Reflective facilities in Smalltalk-80.
Proceedings of OOSPLA’89, New Orleans, LA, pp 327-335, October 1989.

[Hed89] G. Hedin An object-oriented notation for attribute grammars. In S. Cook,
editor, Proceedings of the 3rd European Conference on Object-Oriented
Programming (ECOOP’89), BCS workshop Series, pp 329-345,
Nottingham, U.K., July 1989. Cambridge University Press.

[Hed92] G. Hedin. Incremental semantic analysis. PhD thesis, Lund University,
Lund, Sweden, 1992.

[Hed94] G. Hedin. An overview of door attribute grammars. In Proceedings of the
5th international conference on Compiler Construction (CC’94), LNCS
786, pp 31-51, Edinburgh, April 1994. Springer-Verlag.

[JF88] R. E. Johnson and B. Foote. Designing reusable classes. Journal of
Object-Oriented Programming, 4(2):22-35 June/July 1988.

[LH89] K. J. Lieberherr and I. M. Holland. Assuring good style for object-oriented
programs. IEEE Software, Sept 1989, pp 38-48.

[LM81] M. Löfgren and B. Magnusson. An extension of Simula for concurrent
execution. In Proceedings of the 9th Simula Users’ Conference. 1981,
Geneva.

[Mey88] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

16

[MHM+90] B. Magnusson, G. Hedin, and S. Minör, et al. An overview of the Mjølner/
Orm environment. In J. Bezivin et al., editors, Proceedings of the 2nd
International Conference TOOLS (Technology of Object-Oriented
Languages and Systems), pp 635-646, Paris, June 1990. Angkor.

[MMN93] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object Oriented
Programming in the BETA Programming Language. ACM Press, 1993.

[Smi84] B. C. Smith. Reflection and Semantics in Lisp. Proceedings of the 1984
ACM Principles of Programming Languages Conference, pp 23-35. 1984.

[Vau75] Prefixed procedures: A structuring concept for operations, INFOR, Vol.
13, No. 3, October 1975.

17

Appendix Specification of Monitor library-specific checks

Convention 1
addto Method {

progdef entry: boolean = false; }

Convention 2
addto Method {

error missingEnter: string =
if entry and not

(Body.globalnameOfFirstStatement =
“MonitorLib:Monitor:Enter”)

then “Missing call to Enter”
else “”:

error missingExit: string =
if entry and not

(Body.globalnameOfLastStatement =
“MonitorLib:Monitor:Exit”)

then “Missing call to Exit”
else “”: }

addto Body {
syn globalnameOfFirstStatement: string =

if Statement.cardinal=0
then “”
else Statement[1].globalname;

syn globalnameOfLastStatement: string =
if Statement.cardinal=0
then “”
else Statement[cardinal].globalname; }

addto Statement {
syn globalname := “”; (* Default *) }

addto MethodCall {
eq globalname = DeclBinding.globalname; }

Convention 3
addto Descendant {

inh inBodyOfEntry }

addto Node {
eq all Descendant.inBodyOfEntry = false; }

addto Method {
eq Body.inBodyOfEntry = entry; }

addto Body {
eq all Statement.inBodyOfEntry =

inBodyOfEntry }

addto MethodCall {
error misplacedEnter: text =

if (DeclBinding.globalname =
“MonitorLib:Monitor:Enter”)

and not inBodyOfEnter
then “Misplaced call to Enter”
else “”;

error misplacedExit: text =
if (DeclBinding.globalname =

“MonitorLib:Monitor:Exit”)
and not inBodyOfEnter

then “Misplaced call to Exit”
else “”; }

Convention 4
addto Descendant {

inh inAwaitChangePosition: boolean;

addto Node
eq all Descendant.inAwaitChangePosition =

false;

addto WhileStmt
eq DoPart.inAwaitChangePosition =

(inBodyOfEnter and sonNo=2);

addto MethodCall
error misplacedAwaitChange: text =

if DeclBinding.globalname =
“MonitorLib:Monitor:AwaitChange”

then
if not inAwaitChangePosition then

“Misplaced call to AwaitChange”
else “”

else “”; }

Convention 5
addto Descendant {

syn isMonitor: boolean = false; (* Default *)
syn isMonitorSubclass: boolean = false;

(* Default *) }

addto Class {
eq isMonitor =

(globalname = “MonitorLib:Monitor”);
eq isMonitorSubclass =

OptSuperClass.isMonitor or
OptSuperClass.isMonitorSubclass; }

18

addto SuperClass {
eq isMonitor = DeclBinding.isMonitor;
eq isMonitorSubclass =

DeclBinding.isMonitorSubclass; }

addto Descendant {
inh inMonitorSubclass: boolean; }

addto Node {
eq all Descendant.inMonitorSubclass =

false; }

addto Class {
eq MethodList.inMonitorSubclass =

isMonitorSubclass; }

addto MethodList {
eq all Method.inMonitorSubclass =

inMonitorSubclass; }

addto Method {
error misplacedEntry: text =

if entry
then

if not inMonitorSubclass
then “Misplaced entry procedure”
else “”

else “”; }

Convention 6
addto Method {

error nonProtectedNonEntry: text =
if InMonitorSubclass
then

if not entry
then

if not protected
then “Missing declaration of this

method as protected”
else “”

else “”
else “”; }

Notation
progdef A local attribute whose defining

equation may be overridden in the
application program for individual node
instances

error A local string attribute which will be
displayed as an error if its value is not
equal to the empty string

syn A synthesized attribute (may be
accessed by the parent node)

inh An inherited attribute (must be
defined by the parent node)

eq An equation

eq all NodeClass.Attr = exp Collective
equation defining the value of the attribute
Attr for all son nodes of class NodeClass

The declaration of a synthesized or local
attribute may include an equation. I.e.,

kind attr: type = exp;

is equivalent to

kind attr: type;
eq attr = exp;

