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ABSTRACT

The relationship between framework design and language constructs are discussed for two re
firstly, designing frameworks requires the ability to give the framework designer precise co
over aspects of the framework extensions; secondly, the framework constraints should be sp
such that they are statically checkable. Four existing language constructs are discussed: gene
block structure, generalized inheritance, generalized virtuality, and singular objects. It is disc
how these language constructs give precise means for controlling the framework extensions i
ically checkable ways.

1 FRAMEWORKS AND LANGUAGES

A framework encapsulates a reusable, stable design and provides hooks for extending and v
this design and isplannedfor reuse. Its whole reason for existence is to be reused in different ap
cations. A framework realizes a coherent software architecture, consisting of classes and o
with well-defined structural and behavioral properties [Fayad and Schmidt 1997]. The framewo
intended to be varied in given ways, and a well-designed framework will allow these variation
be easy to write correctly, and at the same time provide sufficient flexibility in varying the des
Good language support will allow a framework designer to use the language to set up rules f
intended use of the framework. For example, it is desirable to have precise control over how f
work classes may be specialized.

We will here focus on the role of language constructs for the design of frameworks with em
sis on support for encapsulation of the stable part of the design, and on support for capturi
intentions in a precise and preferably statically checkable way.

Framework design is a balance between flexibility and safety. However, in order for framew
to be industrially acceptable, the structural and behavioral properties of a framework mu
enforceable (mostly statically). Such enforcement can be supported by mechanisms externa
language as suggested in [Hedin 1997] and [Minsky and Pal 1997], but it is better if the langua
able to directly enforce these framework properties. We will show that well-known static langu
constructs offer strong support for industrial framework design, providing that they are genera
Our starting point is to look at current object-oriented languages which are both safe and fle

Language Support for Application Framework Design
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exemplified by Eiffel [Meyer 1992], BETA [Madsenet al. 1993], and Java [Arnold and Gosling
1996]. These languages are all based on mainly static type checking and garbage collection
we find as basic prerequisites for being able to design safe frameworks. We will discuss the r
four generalized language mechanisms in supporting framework design: generalized block
ture, generalized inheritance, generalized virtuality, and singular objects. These mechanisms
available in BETA, and partly in several other languages.
This paper is partly based on previous works as reported in [Hedin and Knudsen 1998].

2 GENERAL BLOCK STRUCTURE

Most programming languages exhibit some form of block structure, where block constructs
classes, records, procedures, and functions can be nested within each other. Withgeneral block
structure, we mean the possibility to nest any kind of block construct within any other kind of blo
construct to an arbitrary nesting depth. General block structure also implies that each instanc
block (activation record or object) will exist in the context of an instance of its enclosing block
will have access to all attributes (variables, methods, and classes) of that enclosing instanc
was pioneered in Algol whose block constructs are the procedure and statement block, which
be nested arbitrarily and to any depth. Some function-oriented languages are also built on g
block structure, most notably Scheme [Abelsonet al. 1985].

For object-oriented languages, the general tendency has unfortunately beennot to provide gen-
eral block structure, and to have severe restrictions on how blocks may be nested. Typical
constructs in object-oriented languages are class and method constructs. For most object-o
languages, classes may contain methods, but classes cannot contain local classes, and meth
not contain local classes or methods. In contrast, Simula (which was designed as an exten
Algol) kept the general block structure and allows arbitrary nesting of classes and methods t
depth. However, there are certain restrictions in Simula for how nested classes may be us
how nested classes may inherit from other classes. These restrictions are removed in BETA
[Stroustrup 1997] allows a limited form of nested classes since a nested class can only acces
members of its outer class. (In C++, an instance of an inner class is not automatically linked
instance of the outer class, and it can therefore not access ordinary non-static members of th
class.) Java has recently adopted the BETA style of allowing classes to be nested (calledinner
classes in Java) [Sun Microsystems 1996].

General block structure is useful in frameworks because it supports the notion of what we
call nested hooks. A hook is a location in the framework which can be specialized by the appli
tion programmer. Normally, a hook is an abstract class which can be specialized by subcla
and which contains abstract methods (hook methods) which can be specialized by providing
riding methods in the subclasses [Pree 1994]. This normal kind of hook is thus a 2-level n
entity. However, by utilizing general block structure it is possible to supportnested hooks: A hook
(class or method) may contain any number of local hooks (other classes or methods) each of
may contain any number of local hooks, and so on to any suitable depth. This provides the f
work designer with excellent possibilities for describing precisely what can be extended and
cialized in a framework.

2.1 Nested class hooks

The use of general block structure is omnipresent in the BETA frameworks [Knudsenet al. 1993].
As an example of nested hooks using classes within classes, consider a GUI framework with

dow class defined in figure 11:
Here, the outermost classWindow contains an instance variablewCanvas , a methodsetTi-
2
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tle and a local classButton . ClassButton contains a virtual methodonMouseUp (a hook
method) and two non-virtual methodsdrawAt anddraw . Because of the class nesting, aButton
object will exist in the context of aWindow object, and can access attributes and operations in t
Window object. For example, thedraw method draws the button on the enclosing window’s ca
vas. The framework in this case uses three levels of hooks: aWindow hook containing aButton
hook, containing anonMouseUp hook.

An application may use the framework to implement a calculator tool as shown in Figure 2

Here, the framework is extended at all three hook levels:CalcWindow is a subclass toWin-
dow; plusButton andminusButton are defined as instances of the local classButton ; and

their onMouseUp methods are given appropriate implementations.2 Because of the class nesting
theplusButton andminusButton objects will exist in the context of aCalcWindow object.

1.The language used in this paper is similar in syntactic structure to the Java language to ease the read
of the code examples. The language constructs are all found in the BETA language, and there is a 1-1 ma
ping between the syntax used here, and the syntax of the BETA language.

Window: class  {
wCanvas: Canvas;
void  setTitle(t: text) { ... };
Button: class {

void  onMouseUp() virtual ;
void  drawAt(c: Canvas) { ... };
void  draw() { drawAt(wCanvas) };

}
}

Figure 1. Window framework with localButton  class

CalcWindow: class  Window {
theCalculator: instance  Calculator;
plusButton: instance  Button {

void  onMouseUp() extended {
theCalculator.plus();
setTitle(theCalculator.result());

};
};
minusButton: instance  Button {

void  onMouseUp() extended {
theCalculator.minus();
setTitle(theCalculator.result())

};
};
...

}

Figure 2. Application using the Window framework
3
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This allows their implementations ofonMouseUp to access e.g.theCalculator (an object
defined inCalcWindow ) andsetTitle  (a method inCalcWindow ).

The example shows how the framework imposes a structure where aButton is viewed as some-
thing local to aWindow, i.e. it can exist only in the context of aWindow. This allowsButton
objects to easily access attributes and operations of their window. This imposed structure
application programming much easier than if the connection between buttons and windows ha
to be handled explicitly.

Refactoring nested classes

Local classes are useful in particular when the local class is meaningful only inside the cont
its enclosing class. However, if parts of it are meaningful also outside this context, it may be a
tageous to refactor the framework to define those parts outside the enclosing class. This struc
shown in figure 3. The parts ofButton which are not dependent onWindow are factored out into
a new top-level class which may be reused in other contexts thanWindow. This refactoring thus
achieves both the reusability of non-nested classes and the tight coupling of nested classes.

Simulating nested classes

In a language without nested classes, the nesting can be simulated by declaring the local clas
same level as the outer class, and giving the local class an explicitcontext reference to an object
of the outer class, as shown in Figure 4. For a framework, this has several drawbacks, ho
Firstly, thecontext reference needs to be explicitly administered by the application. Secon
the context reference will be qualified by the outer class in the framework. This has the ef
that extensions of the local class cannot safely access attributes and operations in extension
outer class, but have to resort to casting.

The use of general block structure thus allows the framework to capture more of the archite
of the system, and allows safer and easier application programming.

Nested method hooks

General block structure also allows methods to be nested within methods. For frameworks

2.TheplusButton andminusButton are defined assingular objects, a concept discussed in Section
5.

Button: class {
void  onMouseUp() virtual ;
void  drawAt(c: Canvas) { ... };

};
Window: class {

wCanvas: Canvas;
void  setTitle(t: text) { ... };
WindowButton: class  Button {

void  draw() { drawAt(wCanvas) };
};

};

Figure 3. Refactored Window framework
4
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allows a hook method to contain a finer structure of local hook methods. We will discuss th
more detail in Section 3 since the full advantages of this builds on the notion of method inherit

2.2 The Framework as a Class

General block structure allows the framework itself to be described as a class. In most objec
ented languages, a framework is a collection of classes which form some kind of package or li
However, general block structure allows the framework itself to be described as a class. The f
work class can then contain local classes and methods, some of which may be hooks.

Framework specialization hierarchy

Modelling the framework as a class is useful because it allows a specialization hierarchy of fr
works to be defined with the general framework at the root of the hierarchy and the very applic
specific frameworks at the leaves of the hierarchy. An example of this is Simula’s standard
Simulation which is a general framework for discrete-event simulation. It contains a local c
Process for modelling processes in a simulation and maintains a queue of such process
sketched in Figure 5.

More specialized simulation frameworks can be built by subclassing theSimulation frame-
work and introducing more specialized local classes. Figure 6 shows an example of such fram
specialization, taken from the Simula documentation from 1970 [Dahlet al. 1970].

Multiple framework instantiation

Modelling the framework as a class allows data global to the framework to be modelled as ord
instance variables. For example, in classSimulation , the process queue reference (SQS) is an
instance variable. Languages without general block structure usually have special languag
structs for global variables, for example “static” variables in C++ and Java. However, in contra
such framework packages, a framework class can be instantiated more than once. Each inst
the framework will then obtain its own set of data local to the framework, but freely accessible
global data) to the local classes in the framework. Such multiple framework instantiation is o
useful. For example, in an instance of a simulation framework it is possible for an individual
cess to have its own instance of the framework in order to perform a local simulation. This

Figure 4. Nested classes vs. simulated implementation

Nested classes Simulated implementation

OuterClass: class  {
v: Type;
InnerClass: class  {

void  m( ...) {
... v ...

};
};

};

OuterClass: class  {
v: Type;

};

InnerClass: class  {
context: OuterClass;
void  m(...) {

... context.v ...
};

};
5
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3 GENERAL INHERITANCE

Inheritance is often described as an “incremental modification mechanism” [Wegner and Zd
1988], allowing individual instance variables and operations to be added in subclasses. How
the possibility to add or override operations gives fairly coarse-grained incremental modifica
Fine-grained incremental modification can be achieved by supporting inheritance also for me
i.e. a method can have submethods in analogy to a class having subclasses. BETA supports
ance for methods in the following way: The supermethod may contain a statementinner which
causes the code of the submethod to be executed. Submethods may declare additional in
output parameters (return values). Theinner construct originates from Simula, and submetho
combined with theinner mechanism was originally proposed in [Vaucher 1975].

If inheritance is supported for all kinds of block constructs in a language, we say that the
guage hasgeneral inheritance. The fine-grained incremental modification which can be obtained
languages with general inheritance is important in framework design because it gives the f
work designer the possibility to capture more of the common architecture in the framework.

Simulation: class {
SQS: list of  Process;

Process: class {
...

};

Process current() { ... };

void  hold(T: double) { ... };
void  activate(... X: Process ...) { ... };
void  passivate(...) { ... };
...

}

Figure 5. The framework as a class - Simula’s classSimulation .

JobShop: class  Simulation {
Crane: class  Process {

...
};

Machine: class  Process {
...

};
}

Figure 6. A specialized simulation framework for job-shop analysis.
6
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By using method inheritance, a hook in the form of aninnerstatement can be added directly int
a control structure in the framework, allowing the application programmer to extend the beh
directly in the context of the hook.

3.1 Method Inheritance

As an example of when method inheritance is beneficial, consider the construction of a frame
for concurrent programming, including a class formonitors[Hoare 1974] which provides mutually

exclusive access to its encapsulated data by means ofentry methods.3 Each entry method must first
lock the monitor (possibly involving waiting for the lock to become available), then access d
and finally unlock the monitor. This common behavior for entry methods can be captured in
framework by an abstract methodentry as shown in Figure 7. ASemaphore object is declared
in the Monitor class and is used by theentry method to lock and unlock the monitor
(mutex.P , mutex.V ). In applications of the framework, application-specific monitors can
defined by subclassingMonitor and providing suitable access methods as submethods toentry .
The access methods will extend the behavior ofentry at the point ofINNER, thereby ensuring
that the access to the monitor data is done while the monitor is locked.

Figure 8 shows an example application defining aFIFOqueue using theMonitor class in the
framework. TheFIFOqueue contains a list of elements,L, i.e. the encapsulated data. Two acce
methods,put andget , are defined as submethods ofentry . These methods extendentry both
by providing additional parameters (put provides an input parameter andget a return value), and
by extending the code of the method (by actual accesses to the encapsulated list).

In executing a method, e.g.put , which is a submethod of some other method, e.g.entry , the
execution starts in the most general method (i.e. inentry in this case) and methods are combine
top-down in the method inheritance hierarchy. At the place of an INNER, the code of the imme
submethod is executed. Figure 9 shows the full behavior of theput method when super- and sub
methods are combined.

This example shows that subclassing and submethoding allows the framework to factor o
that is specific to monitors as such: the monitor encapsulation, the locking and its implemen

3.This example is in part directly taken from the original paper by Vaucher [Vaucher 1975], and in part
directly from [Madsenet al. 1993]

Monitor: class  {
mutex: instance  Semaphore;
void  entry() { mutex.P(); INNER entry; mutex.V() }

}

Figure 7. A framework for concurrent programming.

FIFOqueue: class  Monitor {
L: list of  Element;
void  put(e: element) entry { L.insertLast(e) };
Element get() entry { return  L.removeFirst() };

}

Figure 8. Application using theMonitor  class in the framework to define a FIFOqueue.
7
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using a semaphore. The application defines an application-specific monitor, with data to enc
late and access methods to that data, much as if a built-in language construct for monitors
available.

3.2 Implementation of rendez-vous communication with method inheritance

The framework for concurrent programming can be extended by adding facilities for synchro
communication similar torendez-vousin Ada [US Department of Defense 1980]. We do this b
adding aPort  concept as shown in Figure 10.

By combining block structure and method inheritance, this framework offers elegant suppo
rendez-vous communication. Figure 11 illustrates an application of the framework, using the
dez-vous facilities for synchronizing web browsers with a shared network server.Browser1 and
browser2 both utilize the shared servertheHTTPServer . All three objects run in separate
threads. Assume that both browsers at the same time wish to download a web document. Th
then at the same time execute essentiallytheHTTPServer.getURL(url) . Since thegetURL
operation inHTTPServer is a submethod ofentry , the very first thing that happens in both
browsers in this case will be the execution ofmutex.P() on themutex semaphore instance in
theHTTPServer . Their execution will therefore be postponed untiltheHTTPServer accepts a
call of one of theentry operations in the portHTTPport by executingHTTPport.accept() .
As soon as this has been executed, one of the two browsers will be allowed to continue its e
tion, whereas the second browser is still awaiting themutex semaphore, andtheHTTPServer is
awaiting thesync semaphore (see the code of theaccept operation inPort ). Just before the
first browser has finished theserver.getURL operation, it will release thesync semaphore,
which in turn will release thetheHTTPServer , making it possible fortheHTTPServer to con-
tinue execution.TheHTTPServer will then execute anotherHTTPport.accept() , thereby
allowing the second browser to download a web document.

This synchronization behavior is totally encapsulated, and controlled by the port framew
made possible by the two language constructs generalized block structure and generalized
ance (especially inheritance for methods).

More extensive examples of defining and using concurrency constructs are given in [Madset
al. 1993], including definition of monitors with conditions and more advanced ports. These ex

// transfer input parameters (e in this case)
mutex.P()
L.insertLast(e)
mutex.V()
//transfer return values (none in this case)

Figure 9. Full behavior ofput  after method combination.

Port: class  {
mutex, sync: Semaphore;
void  entry() { mutex.P(); INNER entry; sync.V() };
void  accept() { mutex.V(); sync.P() }

}

Figure 10. Port framework for concurrent programming.
8
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for the application programmer.

3.3 Further illustration of method inheritance

We can further illustrate method inheritance by extracting the common behavior of the diffe
buttons in theCalcWindow class of Figure 2 and use method inheritance to reuse this genera
behavior in allCalcWindow buttons as illustrated in Figure 12. This shows how the use of meth
inheritance to factor out common behavior in methods, in analogy to how class inheritance is
used to factor out common behavior in classes. Other examples of the use of submethoding
the definition of control structures such as iterators for generic data structures. We will return t
issue in section 4.

HTTPserver: class  {
CommPort: class  Port {

HTMLdocument getURL(url: text) entry {
... // get the document from WWW

};
void  putURL(url: text; doc: HTMLdocument) entry {

... // download ‘doc’ at location ‘url’
};

};
HTTPport: instance  CommPort;

while  (true) {
HTTPport.accept()

}
}
Browser: class  {

server: HTTPserver;
void  connectToServer(WEBserver: HTTPserver) {

server = WEBserver; ...
}

... when the user clicks a link ...
server.getURL(linkURLaddress);

...
};

theHTTPServer: instance  HTTPserver;
browser1, browser2: instance  Browser;

...
browser1.connectToServer(theHTTPServer);
browser2.connectToServer(theHTTPServer);
...

Figure 11. Application of Port framework: a HTTP communication example.
9
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3.4 Top-down combination of virtual methods

The two previous examples have shown how theinner mechanism is used to combine methods
submethoding. In BETA, theinner mechanism is used also to combine implementations of virt
methods. Theinner mechanism combines virtual method implementations top-down, starting
cution in the method implementation in the most general class. This is opposite to thesupermecha-
nism in Smalltalk [Goldberg and Robson 1983] and Java which combines virtual me
implementations bottom-up. The top-down combination means that virtual methods are never
ridden - they can only be extended. For frameworks, such top-down combination is appro
since it gives the framework control over how methods are extended which is essential in or
ensure that invariants in the framework are not broken by the application programmer. In con
bottom-up combination and free method overriding is suitable forunplannedreuse where an appli-
cation programmer reuses an implementation in order to recast it to some other purpose than
nally intended. (To support frameworks better, many languages with bottom-up me
combination have other facilities to give the framework more control. For example, in C++ it is
sible to declare non-virtual methods, and in Java it is possible to declare methods asfinal, meaning
that they cannot be overridden in subclasses.)

We will now discuss three different examples of top-down method combination in relatio
frameworks.

Virtual method extension

When an application programmer defines a subclass to a framework class, it is common th
methods of the class should be extended as well. For example, consider a GUI framework su
ing theDecoratordesign pattern which allows the functionality of an object to be extended dyn
ically [Gammaet al. 1994]. In the GUI framework a window can be decorated with, for examp
scrollbars and borders. A decorator keeps track of its component to which it forwards all mess
In addition, the decorator may perform some extra behavior. For example, when a deco
receives the messagedraw it will first draw its component and then draw itself. Figure 13 shows
example of the framework code fordraw in Decorator , capturing the common behavior of for-
warding the message to the component. AnINNER is placed last indraw to allow subclasses of

CalcWindow: class  Window
{

theCalculator: instance  Calculator;
UpdatingButton: class  Button

{ void  onMouseUp() extended
{ inner  onMouseUp; setTitle(theCalculator.result) };

};
plusButton: instance  UpdatingButton

{ void  onMouseUp() extended  { theCalculator.plus() } };
minusButton: instance  UpdatingButton

{ void  onMouseUp() extended  { theCalculator.minus() } };
...

}

Figure 12. CalcWindow example.
10
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Decorator  to perform their extra behavior.

The GUI framework may provide some standard decorators, like scrollbars and borders, bu
also possible to define specialized decorators in the application. For example, if the applicatio
grammer is not satisfied with the standard scrollbars, a new specialized decorator for narrow
bars can be defined as shown in Figure 14. The extension of the virtual methoddraw simply
implements the drawing of the scrollbar. The application programmer does not have to worry
forwarding the message to the component, this is already taken care of in the framework. This
tion for the decorator pattern differs from the standard implementation using bottom-up me
combination where the application would typically need to remember to callsuper .

The need for virtual method extension is particularly apparent for operations which in some
deal with thecompleteset of data in an object, e.g. initialization methods, clone methods, p
methods, etc. Here top-down combination makes sure that the framework can perform all its a
without the risk of these actions being overridden by application code. Another use of vi
method extension is in instrumentation of framework code, e.g. in order to animate computa
taking place in the framework.

Pre-conditions

Checking of preconditions for methods is common practice in order to make sure that frame
operations are called by the application when in an appropriate state and with appropriate
ments, thereby supporting safe use of the framework. Top-down method combination allows
conditions of virtual methods to be checked at the declaration of the virtual method rather th
have to be repeated in each implementation of the method. Of course, a special language m
nism for preconditions, like in Eiffel, serves the same purpose.

Default behavior

It is common that virtual methods in a framework define default behavior which isintendedto be
overridden if desired in the application. In this case, the usual style of overriding virtual met

Component: class  {
draw() virtual  { INNER draw };

};

Decorator: class  Component {
myComponent: instance  Component;
draw() extended  { myComponent.draw; INNER draw };

};

Figure 13. GUI framework with support for the Decorator pattern

NarrowScrollbarDecorator: class  Decorator{
draw() extended  {

... // draw the scrollbar
};

};

Figure 14. Application of GUI framework defining specialized decorator.
11
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works fine. If top-down method combination is used, like in BETA, the framework method imp
menting the default behavior needs to check if the method is extended or not. In BETA this c
done by means of so called pattern variables (variables holding the class value of an object o
ogously for methods). If the method is not extended, the default behavior will be executed. W
this is not as straight-forward for the framework application as in traditional method overriding
application program will be the same in both cases. In addition, the top-down method combin
allows default behavior to be combined with preconditions as discussed above.

3.5 Comparison of top-down method combination with other techniques

We have argued that top-down method combination usinginner is more appropriate for frameworks
than the usual bottom-up method combination usingsuper.The use ofsuperleads to informal pro-
gramming conventions, such as “when overriding this method, you must callsuperat the start of the
method”. In contrast, top-down combination usinginner gives the framework precise control ove
how methods may be extended and/or overridden, thus supporting planned reuse and sup
that framework invariants are not broken by the application.

The inner construct is somewhat similar to thecall-next-methodconstruct foraroundmethods in
CLOS [Keene 1988]. However, CLOS combines actions bottom-up, so it is always possible f
application programmer to override botharound methods and the ordinaryprimary methods
defined in the framework, thus possibly destroying the semantics of the framework.

Top-down method combination for virtual methods can be simulated by using the design pa
Template Method which factors out sub-behavior of a template method to virtual hook met
[Gammaet al. 1994]. This can be used to replaceINNER with a call to a virtual procedure. How-
ever, this leads to a proliferation of virtual methods. For example, for a virtual methodinit which
is extended at each level in a hierarchy of classesA, B, andC, there would be a need to introduce
three new virtual methods, e.g. calledinitInnerA , initInnerB , and initInnerC . While
this is possible, it is cumbersome, errorprone, and leads to a more complex framework spec
tion interface.

Note, however, thatinner can be simulated by the Template Method pattern only in the case
virtual methods. Sub-methoding, as discussed in section 3.1, cannot be simulated by the Te
Method. E.g., ifINNER in theentry method were replaced by a virtual methodentryInner-
Monitor , this would not help becauseput and get are not virtual implementations, butsub-
methodsof entry . The best we could do with the Template Method would be to define t
template methodsput andget in classMonitor , and let them call virtual methodsputInner
and getInner . These virtual methods would then be implemented by the application in s
classes toMonitor . However, this would restrict the monitor functionality to monitors wit
exactly two entry methods, and would furthermore make it necessary to decide on the numb
types of parameters for these methods already in the framework. In contrast, in a framework
on submethoding, applications can define monitors with any number of entry methods and
parameters decided by the application.

4 GENERAL VIRTUALITY

Virtual methods is a well understood concept in object-oriented programming: a class defin
virtual method gives incomplete information about the implementation of that method. The c
plete information is in general not known until run-time. By taking a more general view on virtu
ity we can define it as a mechanism for supplying incomplete information about an entity at a
level of abstraction. With this view, we can see that virtuality in mainstream object-oriented
guages is limited tovirtual methods. By general virtualitywe mean that virtuality can be applied to
12
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all kinds of block constructs in the language.

4.1 Virtual Classes

In BETA, the unification of methods and classes has lead to the notion ofvirtual classes[Madsen
and Møller-Pedersen 1989] in analogy to virtual methods. A class defining a local virtual c
declares that the local virtual class must be a subclass of some specific class. However, the
subclass may not be known until run-time. Virtual classes correspond to a kind of type param
(bounded polymorphism) and the mechanism can be used as an alternative to parameterized
in Eiffel, or templates in C++. A recent proposal shows how virtual classes can be added to
[Thorup 1997].

Let us illustrate by a simple example of a framework with a bounded polymorphic list data

as shown in Figure 154. TheList class contains a classElementType which is the class of the
elements in the list.ElementType is virtual, meaning that at this level we don’t know exactl
which classElementType is - we only know that it is at leastObject (eitherObject or a sub-
class toObject ). TheList is implemented using a local classNode with next andprevious
references.

In an application of the framework, we can describe a list of houses as shown in figure 16
virtual classElementType is now extendedto House , meaning that it is ensured to be at lea
House (eitherHouse or a subclass ofHouse ). This implies that all elements in aHouseList
will be at leastHouse objects and when accessing attributes of an element we can safely acce
example thetaxRate attribute as shown in the figure. The methodgetElement() here sym-
bolizes any operation inList which returns an object ofElementType . SinceaHouseList is
of type HouseList where ElementType is bound toHouse , the expressionaHouse-
List.getElement() has the typeHouse and the access totaxRate can be statically type
checked.

4.2 Virtual classes and method inheritance

The combination of virtual classes with method inheritance is very powerful because it al
abstract methods specified in a framework to be parameterized by types using the virtual

4.<<listLib: attributes>> is inserted in Figure 15 for future reference. We will below add some
operations to thisList class. To reduce the space, we will not repeat the entireList declaration, but just
give the declaration of the new operations. Just think of these new operations as being inserted textually
this place in theList  class declaration.

List: class  {
ElementType: virtual class  Object;
Node: class  {

element: ElementType;
next, previous: Node

};
first: Node;
<<listLib: attributes>>

}

Figure 15. Framework with polymorphic list data type.
13
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operations. Figure 175 showsscan , an abstract method iterating over all the elements in the l
Scan calls INNER for each element in the list (see Section 3.1 on method inheritance) andcur-
rent  is a reference denoting the current element in the iteration.

The scan method can be specialized by the application to for example display all houses
HouseList  as follows:

5.--- listLib: attributes --- in Figure17 specifies, that this newscan operation is to be in-
serted at the<<listLib: attributes>>  place in theList  class declaration in Figure 15.

House: class  {
taxRate: float;
void  display() { ... };
...

};

HouseList: class  List {
ElementType: extended class  House;
<<HouseListlib: attributes>>

}

// access to element in a HouseList

aHouseList: instance  HouseList;
...
print (aHouseList.getElement().taxRate);

Figure 16. Application defining specialized list

--- listLib: attributes ---
void  scan() {

// Iterates over all elements in List
pos, next: Node; current: ElementType

pos = first;
while  (pos<> null ) {

current = pos.element; next = pos.next;
INNER scan;
pos = next

}
}

Figure 17. Extension of the frameworkList  class
14
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--- HouseListLib: attributes ---
void  print() scan { current.display() }

Note, that the virtual extension ofElementType in HouseList ensures that it is statically
known thatcurrent is of typeHouse , and therefore, thatcurrent.display() is legal. We
can also modify the attributes of the objects through thecurrent reference inscan as illustrated
by the followingraiseTax  method:

--- HouseListLib: attributes ---
void  raiseTax() scan {

current.taxRate = (current.taxRate*1.01)
}

which will raise the tax rate of all houses in theHouseList  by 1 %.
Submethoding can be used to define more advanced operations onList in the framework. Fig-

ure 18 shows the definition of an operationselect which is a submethod ofscan , and operations
find  andremove  which are submethods ofselect .

Theselect method also shows the use of general block structure for methods. It defines a
methodpredicate which is virtual and used to decide which elements to include in the iterati
The select method can be used in the application to display all houses with a tax rate at m
than 10% by defining theprintExpensive  method:

--- HouseListLib: attributes ---
void  printExpensive() select {

void  predicate() extended  { return  current.taxRate>0.1 }

current.display()
}

Thefind method (in Figure 18) is a submethod ofselect which returns the first element satisfy
ing predicate . If no such element is found, the method will returnnull . (Thereturn state-
ment sets the return value of a method but does not alter the execution control. Theleave
statement is a structured goto statement which returns control to the caller. We can now find th
house in the list with a tax rate at more than 25% by thefindHighTaxed  method:

--- HouseListLib: attributes ---
void  findHighTaxed() find {

void predicate() extended { return current.taxRate>0.25 }
}

The remove method (in Figure 18) is also defined as a submethod ofselect and removes all
elements satisfyingpredicate . We can use this operation to remove all houses with a 0%
rate by theremoveZeroTaxed  method:
15
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--- HouseListLib: attributes ---
void  removeZeroTaxed() remove {

void  predicate() extended  { return  current.taxRate=0.0 }
}

The above discussion illustrates the elegancy and powerful static constraints that can be en
lated in a framework when the framework design is supported by strong, static language m
nisms like general block structure, general inheritance, and general virtuality.

4.3 Virtual Classes in Frameworks

Virtual classes are very powerful when combined with general block structure. They allow virt
(or incomplete information) to be described at any level in the program. This is very usefu
framework design, because it allows incomplete descriptions to appear at any level in the d
For example, the framework may itself contain a virtual class. This will then serve as a type pa

--- listLib: attributes ---
void  select() scan {
// iterates over all elements in List which
// satisfies the predicate

boolean predicate() virtual  { INNER predicate }

if  (predicate) { INNER select }
}

ElementType find() select {
// returns the first element in List which satisfies
// the predicate

INNER find; return  current; leave  find;
}

void  remove() select {
// removes all elements in List which satisfy the
// predicate

if  (pos.next<> null ) {
pos.next.previous = pos.previous

} else  {
pos.next.previous = null

}
if  (pos.previous<> null ) {

pos.previous.next = pos.next
} else  {

pos.previous.next = null
}
if  (pos=first) { first = pos.next }
pos.next = null ; pos.previous = null

}

Figure 18. Operations implemented as submethods ofscan  in the frameworkList  class
16
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eter to the entire framework, provided as a single point for specialization by the application
grammer. The alternative using ordinary main-stream parameterized classes would be f
application programmer to consistently parameterize all abstract classes in the framework (o
special instantiation operations for these abstract classes, e.g. using the factory patterns [Gaet
al. 1994]) which make use of this virtual class. This is cumbersome and error-prone for the ap
tion programmer, leading to possible structural or behavioral problems in the usage of the fr
work.

We can illustrate this by the framework for business applications shown in Figure 19. This fra
work defines a set of cooperating classes, each implementing aspects of the business, suc
financial aspects (Accounting ), the advertising, etc. (Marketing ), and the order and shipmen
handling (Operations ). Important for the proper cooperation of these classes within the fram
work is that they share the same understanding of the concept of a customer. This is in this f
work expressed by the framework defining one common definition ofCustomer as a virtual class.
Customer is virtual in theBusinessFramework , since it should be possible to create specia
ized business frameworks in which there is a specialized understanding of the concept of
tomer.

A specialized business frameworkITbusiness is shown in Figure 20. Here, theCustomer
class is extended to include e.g. information about the customer’s favorite operating system
local classes forAccounting etc. are extended to make use of that information, e.g. in
invoice  method.

Figure 21 shows how we can go even further by specializing thisITbusiness framework into
a framework for security software. This specialization is done in a similar way by extending
definitions ofCustomer , Accounting , etc.

The business framework example above illustrates the power of combining virtual classes
general block structure: a virtual class (Customer ) provides a single point of type parameteriza

BusinessFramework: class  {
Customer: virtual class  Object;
CustomerDatabase: class  Database {

ObjectType: extended class  Customer
};
theDatabase: instance  CustomerDatabase;
Accounting: virtual class  {

void invoice(c: Customer) virtual  {
... INNER invoice ...

}
... functionalities for accounting ...

};
Marketing: virtual class  {

... functionalities for marketing ...
};
Operations: virtual class  {

... functionalities for operations ...
};

}

Figure 19. Business framework
17
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tion for a complete framework of different classes (likeAccounting , Marketing , Opera-
tions , and so on). In a system with traditional type parameters such as C++ templates or
parameterized classes, one would modelAccounting , Marketing , and so on as templates eac
with a Customer type parameter. These templates would then have to be individually instanti
to classes, providing aCustomer  subclass as a parameter.

The example further illustrates how virtual classes can be extended in several steps: The
classesCustomer and Accounting defined in the generalBusinessFramework are
extended in theITbusiness framework (a subclass ofBusinessFramework ) and again in
ITsecurity (a subclass ofITbusiness ). Such stepwise extension is not possible in tradition
type parameterization.

4.4 Virtual classes and covariance

Virtual classes lead to what is known as acovariant type system: Consider a classC with a local
variablev of the virtual classT, and a subclassD which extendsT. This leads to a situation where
the type ofv will be more special in aDobject than in aCobject. I.e., the types ofv and its enclos-
ing class vary in the same direction (hence the termco-variance). The usefulness of covariance
frameworks was illustrated e.g. in Section 4.1 whereList was specialized toHouseList and

ITbusiness: class  BusinessFramework {
Customer: extended class  {

void  favoriteOS() {
...

}
};
Accounting: extended class  {

void  invoice() extended  {
... c.favoriteOS; ...

}
};
... similar extensions for marketing and operations ...

}

Figure 20. Specialized framework for IT business

ITsecurity: class  ITbusiness {
Customer: extended class  {

securityLevel: integer;
...

};
Accounting: extended class  {

void  invoice() extended  {
... c.securityLevel; ...

}
};
... similar extensions for marketing and operations ...

}

Figure 21. Further specialized framework
18
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local references to elements were specialized fromObject to House using the virtual classEle-
mentType . This allows a framework to capture general aspects of a system without fixing
types of the entities described in the framework.

Many papers have discussed type problems for covariant type systems, e.g. [Cook 1989
they have usually taken a type system based on type redefinition as a starting point where arg
types may be redefined and there is no distinction between a virtual class and an ordinary cl
contrast, the use of virtual classes allows the use of covariance without type problems. Figu
shows the difference between covariance in a type system based on redefinition and a type
based on virtual classes.

In the ordinary type system, the argumente to insert is thought of as having the type
Object , and a call toaList.insert(new Object) would seem correct. But the type sys
tem will break ifaList happens to be aHouseList object which redefines the argument type t
House . In the virtual class type system, the argumente does not have the typeObject . Instead,e
has the typeElementType , and the meaning ofElementType is (in general) not known until
runtime since it is a virtual class. Therefore, a call toaList.insert(new Object) will (in
general) result in a runtime check, checking the type ofe against the value ofElementType for
aList . However, in many cases, runtime checks are unnecessary because the value ofElement-
Type can be determined at compile time. In the following example,aHouseList is a constant
reference and its value ofElementType is House , which can be determined at compile time
Thus, no runtime check is needed atinsert(new House) .

aHouseList: instance  HouseList;
aHouseList.insert( new House);  // statically typesafe

Another possibility of allowing the value ofElementType to be statically determined is to use
final extensionsof virtual classes. A final extension of a virtual class is an extension which prohi
further extension in subclasses. IfElementType in HouseList was defined as a final exten
sion, this would disallow subclasses toHouseList , e.g.SummerHouseList , to further extend
ElementType . A SummerHouseList will have to accept anyHouse in its list. This would
allow calls to insert to be statically type checked also for dynamic references qualified
HouseList . Figure 23 shows an example of this. At the call toinsert , the runtime type of

Figure 22. Covariance in different type systems

Type system based on redefinition Type system based on virtual classes

List: class  {
void  insert(e: Object)

{ ... }
};

HouseList: class  List {
void  insert (e: House)

}

List: class  {
ElementType: virtual class  Object;
void  insert(e: ElementType)

{ ... }
}

HouseList: class  List {
ElementType: extended class  House;

}

19
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aHouseList is not known: it could beHouseList or any subclass toHouseList . But since
ElementType is defined as a final extension inHouseList , we know its value foraHouse-
List at compile-time, namelyHouse , and there is no need for a runtime check at the call
insert .

The covariant properties of general virtuality thus gives an elegant separation of the stat
available information, defined in the abstraction, and the dynamically available information, de
in the specializations, in contrast to type systems based on redefinition which mixes these i
Covariance and virtual classes are treated in more detail in [Madsen et al. 1990].

5 SINGULAR OBJECTS

In traditional object-oriented languages, objects are always instances of previously defined c
In framework design, and especially framework usages, this imposes an extra burden on the
cation programmer, since in order to create an object which is not just a plain instance of a fr
work class, the programmer needs to define a subclass of this framework class, and then ins
the object from this new class.

An elegant solution to this problem is to allow class specialization and object instantiation
done in the same declaration as shown in Figure 24. An objects defined in this way is called asin-
gular object. The class ofs is an anonymous subclass of the classCused in the declaration. To the
right in the figure, a traditional implementation is shown where the class ofs has to be named
(sClass ) and declared explicitly. The use of singular objects thus leads to substantially sim
application code.

Singular objects were originally introduced in BETA and are now also available in Java (ca
anonymous classes). We have already seen the use of singular object in section 2.1 whereplus-
Button andminusButton in the calculator were defined as singular objects. Without singu
objects, the application programmer would have had to first define two classesPlusButton-

HouseList: class  List {
ElementType: final class  House; // Final extension

}

aHouseList: HouseList;
... // aHouseList is assigned to an object
aHouseList.insert( new House); // Statically typesafe

Figure 23. Statically checkable covariance using final extensions

Figure 24. Singular objects vs. traditional implementation

Singular object Traditional implementation

s: instance  C {
void  v( ...) { ... }

}

sClass: class  C {
void  v( ...) { ... }

}

s: instance  sClass;
20
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Class and MinusButtonClass containing the respective implementations ofonMouseUp,
and then defining the two objectsplusButton andminusButton as instances of these classe

Note that singular objects should not be confused withsingletons, i.e. classes of which there is
only one global instance [Gammaet al.1994]. Singular objects are not necessarily globally define
and if their definition is nested in some other block, there may be several instances of the sin
object - one for each instance of the enclosing block. For example,plusButton andminus-
Button are singular objects, but if we create severalCalculatorWindow objects, there will be
oneplusButton  and oneminusButton  for each of the windows.

5.1 Singular objects as adapters

There is often a need toadaptframework classes to work together with classes defined in an ap
cation. As an example, consider an MVC-like framework (Model-View-Controller [Krasner a
Pope 1988]) with general View classes for displaying information in window panes. To build
interactive tool in an application, different View classes are adapted to work together with app
tion specific model classes. One example of a View class isListView implementing a pane con-
taining a scrollable list with a current selection. The specialization interface toListView contains
three hook methods as shown in Figure 25. To use aListView in an application, we need to adap
it to fill in these hooks. Singular objects provide a very elegant solution to this adaptation.

As an example, consider an application implementing a music tool. One of the panes in th
should be a scrollable list displaying a number of different music styles: “reggae”, “jazz”, “cla
cal”, and so on. An application classMusicModel contains the data to be displayed in the lis
pane. The tool can be constructed by attaching instances of the framework classListView to a
MusicModel  instance. Figure 26 shows how this is done using singular objects.

The objectLV in Figure 26 is anadapter: it adapts the behavior of a framework class (List-
View ) to work with a class in the application (MusicModel ). This way to implement adapters is
an alternative to the more traditional implementation techniques discussed in [Gammaet al.1994].
The implementation relies on block nesting: the objectLV is nested inside the objectmusicTool .
SinceLV is a (specialized) instance ofListView , it has direct access to the information inbothof
two classes which need to be connected: toListView by subclassing and toMusicModel by
block nesting. This makes it straight-forward to define the adaptation: virtual methods inList-
View  can directly be implemented to call appropriate methods inMusicModel .

This use of singular objects as adapters is omnipresent in applications using the BETA fr
works. The key motivation for the introduction of class nesting and singular objects in Java (c
“inner classes” and “anonymous classes” in Java) was to support this implementation of ada

ListView: class {
List getList() virtual ;

// Should answer list of alternatives to display
integer getCurrentSelection() virtual ;

// Should answer current selection to display
void  changeModelSelection(index: integer) virtual ;

// Should change the current selection.
// Called when the user performs a new selection.

}

Figure 25. MVC framework: Specialization interface for ListView.
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5.2 Singular objects vs. pluggable objects

Singular objects is an alternative to so-calledpluggable objectsas introduced in the Smalltalk
Model-View-Controller framework [Krasner and Pope 1988]. A pluggable class is a framew
class which can be adapted by the application by providing parameters rather than by subcla
The goal is to avoid having to write trivial subclasses in the application. Typically, many of
parameters to a pluggable class are method names, and the framework class will call these m
by using the Smalltalkperformmechanism. In the MVC framework there are for example plugg
ble View and Controller classes which can be instantiated and attached to an applica
model without the need for subclassing these framework classes. Figure 27 shows the Sm
instantiation interface of a pluggable version of theListView discussed in Section 5.1. The figur
also shows the use of theperform mechanism in the implementation ofPluggableListView .

A problem with Smalltalk’s pluggable objects is that it is a fairly complex technique for
application programmer to understand, relying on many informal programming conventions
example, the framework assumes a certain signature for each of the methods whose nam
passed in the creation message, but these signatures are not a formal part of the framewor
face. Figure 28 shows a Smalltalk application program for constructing the music tool discuss
Section 5.1, but now using the pluggableListView  class.

By comparing the solution using singular objects in Figure 26 with the solution using plugg

MusicModel: class  Subject {
selection: integer;
musicList: List = (“reggae”, “jazz”, “classic”);

List getMusicList() { return  musicList};
integer getMusicSelection() { return  selection};
void  setMusicSelection(index: integer) {

selection := index;
...

};
...

};

// Code creating music tool:
musicTool: instance  MusicModel {

LV: instance  ListView {
List getList() { return  getMusicList(); };
integer getCurrentSelection() {

return  getMusicSelection();
};
void  changeModelSelection(index: integer) {

setMusicSelection(index);
};

};
...

};

Figure 26. Application of MVC framework: a music tool.
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objects in Figure 28, we see that the size of the application code is practically the same. The
technical difference is in static checkability. In the Smalltalk solution, the framework usesperform
to invoke methods in the application model. This call can go wrong if the application program
provides the wrong arguments in the instantiation of thePluggableListView . For example, it
is not statically checkable thatanObject actually has a method with the name given bysetSe-
lectionSel . Even if there is such a method, it is not statically checkable if it has the right nu
ber of arguments. In contrast, in the solution using singular objects, all this information is stati
checkable. Singular objects provides an alternative solution to pluggable objects which also a
explicit trivial subclasses, but which provides a safer interface, not relying on passing me
names as arguments, and where the signatures of all methods are part of the framework inte

Whitebox vs Blackbox Frameworks

In the Smalltalk community, frameworks are often characterized as being mainlyblackbox(mean-
ing that classes are instantiated rather than specialized) or mainlywhitebox(meaning that classes
are intended to be specialized) [Johnson and Foote 1988]. The introduction of pluggable obj
seen as a way of making a framework more blackbox [Roberts and Johnson 1998]. However
definitions of blackbox/whitebox frameworks may be suitable for Smalltalk where there are
weak possibilities for controlling specialization. For languages where static checkability is of p
importance, we find it desirable that frameworks can provide blackbox interfaces also for sp
ization. I.e., that parts of a framework class can be encapsulated and not be used or affected
subclasses in the application. Many languages have information hiding constructs likeprivate, hid-

PluggableListView

// class methods for creation

on: anObject list: getListSel selected: getSelectedSel
changeSelected: setSelectionSel

// instance methods ...

... anObject perform: setSelectionSel with: index

Figure 27. Smalltalk instantiation interface to pluggable ListView.

MusicModel // (the same as in figure 26)

// Code creating music tool:
| aMusicModel, aLV |
aMusicModel <- MusicModel new.
aLV <- PluggableListView

on: aMusicModel
list: getMusicList#
selected: getMusicSelection#
changeSelected: setMusicSelection#.

...

Figure 28. Smalltalk implementation of music tool using pluggable objects
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den,etc. that support this. Another very important aspect is the possibility for the framework to
trol where overriding may take place. This can be done by mechanisms such as non-virtual me
as in Simula, BETA, and C++, by theinner mechanism in BETA, or by using thefinal construct
available in Java.

As shown in Section 5.1, the specialization interface is clear and singular objects makes it e
use. In contrast, the use of pluggable objects to turn a specialization interface into an instan
interface may lead to an interface which is both unsafe and difficult to understand.

5.3 Singular method specialization

By building on method inheritance as discussed in Section 3, the idea of singular objects c
applied also for methods. Whereas singular instances of classes are normally declared as at
of another object or class, a singular instance of a method can be used to specialize a metho

In Section 4.2, we defined a classHouseList , and a series of special purpose method
print , raiseTax , printExpensive , findHighTaxed , andremoveZeroTaxed . If we
assume, that these methods were to be used only once, we could avoid having to define thes
iary methods, and invoke the methods as singular specializations of the original list operations
further, if we assume that we only needed one house list, we could avoid the auxiliaryHouseList
class definition. We could then defineaHouseList  as:

aHouseList: instance  List {
ElementType: final class  House; // Final extension

}

and with this definition, we could instead of defining the auxiliary methods, just invoke the sing
method specialization shown in Figure 29:.

This shows how the combined use of method specialization and singular objects can be use
effect define new control abstractions in the framework which can be used in the application. A
should be noted, that the singular objectaHouseList and the singular method specializations a
equally statically type-checkable as theHouseList class and the auxiliary methods defined i
Section 4.2.

6 CONCLUSION

Advanced and mission-critical frameworks impose modeling and safety requirements on the
gramming languages to be used. In particular, there is a growing need for providing flexibility
statically checkable, type-safe manner. The traditional object-oriented language constru
classes, inheritance, and virtual methods, provides the basic mechanisms for constructing
works. In this paper, we have shown how generalizing these language constructs can provi
framework designer with greater possibilities to encapsulate the stable parts of a design in
safe way, giving the framework designer fine-grained possibilities to control how the framew
can be varied, and providing a very high degree of flexibility in applying the framework. The ge
alized language constructs discussed in this paper are not new, they have beed realized and t
real languages for many years, most notably in the BETA language. What we have done i
paper is to illustrate precisely how these generalized constructs give support in framework d
and application. We hope to have illustrated how these generalized constructs give suppo
planned reusewhere it is the framework which controls how it can be extended and where fra
work invariants can be encapsulated so they cannot be compromised by the application. T
somewhat in contrast to mainstream object-orientation where the focus is on how an applicatio
24
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freely override and replace parts of the framework.
The introduction of new languages, or the adoption of new language constructs into existin

guages, is a difficult process which takes very long time. Recall that classes and inheritance
introduced by Simula in 1967 and it took 15-20 years before these constructs came into wides
use through Smalltalk and C++. All of the generalized language constructs presented in this
have been in use for many years in BETA, and we are happy to see that several of these lan
constructs are beginning to make their way into popular programming languages, such af Ja
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