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ABSTRACT

The relationship between framework design and language constructs are discussed for two reasons:
firstly, designing frameworks requires the ability to give the framework designer precise control
over aspects of the framework extensions; secondly, the framework constraints should be specified
such that they are statically checkable. Four existing language constructs are discussed: generalized
block structure, generalized inheritance, generalized virtuality, and singular objects. It is discussed
how these language constructs give precise means for controlling the framework extensions in stat-
ically checkable ways.

1 FRAMEWORKS AND LANGUAGES

A framework encapsulates a reusable, stable design and provides hooks for extending and varying
this design and iplannedfor reuse. Its whole reason for existence is to be reused in different appli-
cations. A framework realizes a coherent software architecture, consisting of classes and objects
with well-defined structural and behavioral properties [Fayad and Schmidt 1997]. The framework is
intended to be varied in given ways, and a well-designed framework will allow these variations to
be easy to write correctly, and at the same time provide sufficient flexibility in varying the design.
Good language support will allow a framework designer to use the language to set up rules for the
intended use of the framework. For example, it is desirable to have precise control over how frame-
work classes may be specialized.

We will here focus on the role of language constructs for the design of frameworks with empha-
sis on support for encapsulation of the stable part of the design, and on support for capturing its
intentions in a precise and preferably statically checkable way.

Framework design is a balance between flexibility and safety. However, in order for frameworks
to be industrially acceptable, the structural and behavioral properties of a framework must be
enforceable (mostly statically). Such enforcement can be supported by mechanisms external to the
language as suggested in [Hedin 1997] and [Minsky and Pal 1997], but it is better if the language is
able to directly enforce these framework properties. We will show that well-known static language
constructs offer strong support for industrial framework design, providing that they are generalized.
Our starting point is to look at current object-oriented languages which are both safe and flexible,
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exemplified by Eiffel [Meyer 1992], BETA [Madseet al. 1993], and Java [Arnold and Gosling
1996]. These languages are all based on mainly static type checking and garbage collection which
we find as basic prerequisites for being able to design safe frameworks. We will discuss the role of
four generalized language mechanisms in supporting framework design: generalized block struc-
ture, generalized inheritance, generalized virtuality, and singular objects. These mechanisms are all
available in BETA, and partly in several other languages.

This paper is partly based on previous works as reported in [Hedin and Knudsen 1998].

2 GENERAL BLOCK STRUCTURE

Most programming languages exhibit some form of block structure, where block constructs like
classes, records, procedures, and functions can be nested within each otheyenital block
structure we mean the possibility to nest any kind of block construct within any other kind of block
construct to an arbitrary nesting depth. General block structure also implies that each instance of a
block (activation record or object) will exist in the context of an instance of its enclosing block and
will have access to all attributes (variables, methods, and classes) of that enclosing instance. This
was pioneered in Algol whose block constructs are the procedure and statement block, which could
be nested arbitrarily and to any depth. Some function-oriented languages are also built on general
block structure, most notably Scheme [Abelsbal. 1985].

For object-oriented languages, the general tendency has unfortunatelpdieerprovide gen-
eral block structure, and to have severe restrictions on how blocks may be nested. Typical block
constructs in object-oriented languages are class and method constructs. For most object-oriented
languages, classes may contain methods, but classes cannot contain local classes, and methods can-
not contain local classes or methods. In contrast, Simula (which was designed as an extension to
Algol) kept the general block structure and allows arbitrary nesting of classes and methods to any
depth. However, there are certain restrictions in Simula for how nested classes may be used and
how nested classes may inherit from other classes. These restrictions are removed in BETA. C++
[Stroustrup 1997] allows a limited form of nested classes since a nested class can only access static
members of its outer class. (In C++, an instance of an inner class is not automatically linked to an
instance of the outer class, and it can therefore not access ordinary non-static members of the outer
class.) Java has recently adopted the BETA style of allowing classes to be nestedicedled
classesn Java) [Sun Microsystems 1996].

General block structure is useful in frameworks because it supports the notion of what we may
call nested hooksA hook is a location in the framework which can be specialized by the applica-
tion programmer. Normally, a hook is an abstract class which can be specialized by subclassing,
and which contains abstract methods (hook methods) which can be specialized by providing over-
riding methods in the subclasses [Pree 1994]. This normal kind of hook is thus a 2-level nested
entity. However, by utilizing general block structure it is possible to suppested hooksA hook
(class or method) may contain any number of local hooks (other classes or methods) each of which
may contain any number of local hooks, and so on to any suitable depth. This provides the frame-
work designer with excellent possibilities for describing precisely what can be extended and spe-
cialized in a framework.

2.1 Nested class hooks

The use of general block structure is omnipresent in the BETA frameworks [Knedssri993].
As an example of nested hooks using classes within classes, consider a GUI framework with a win-

dow class defined in figureé:1
Here, the outermost cla®®¥indow contains an instance variabMCanvas, a methodsetTi-



Window: class {
wCanvas: Canvas;
void setTitle(t: text) { ... };
Button: class {
void onMouseUp() virtual ;
void drawAt(c: Canvas) { ... };
void draw() { drawAt(wCanvas) };

Figure 1. Window framework with loc&8utton class

tle and a local clas8utton . ClassButton contains a virtual methodnMouseUp (a hook
method) and two non-virtual methodsawAt anddraw . Because of the class nestingBatton
object will exist in the context of &/indow object, and can access attributes and operations in that
Window object. For example, théraw method draws the button on the enclosing window’s can-
vas. The framework in this case uses three levels of hooWsindow hook containing @&8utton
hook, containing annMouseUp hook.

An application may use the framework to implement a calculator tool as shown in Figure 2:

CalcWindow: class Window {
theCalculator: instance  Calculator;
plusButton: instance  Button {

void onMouseUp() extended {
theCalculator.plus();
setTitle(theCalculator.result());
h
h
minusButton: instance  Button {
void onMouseUp() extended {
theCalculator.minus();
setTitle(theCalculator.result())
h
h

Figure 2. Application using the Window framework

Here, the framework is extended at all three hook lev@lcWindow is a subclass toVin-
dow; plusButton  andminusButton are defined as instances of the local cBaton ; and
their onMouseUp methods are given appropriate implementati%Baacause of the class nesting,
theplusButton  andminusButton objects will exist in the context of @alcWindow object.

1.The language used in this paper is similar in syntactic structure to the Java language to ease the reading
of the code examples. The language constructs are all found in the BETA language, and there is a 1-1 map-
ping between the syntax used here, and the syntax of the BETA language.



This allows their implementations @inMouseUp to access e.gheCalculator (an object
defined inCalcWindow ) andsetTitle (a method irCalcWindow ).

The example shows how the framework imposes a structure wigwda@n is viewed as some-
thing local to awindow, i.e. it can exist only in the context of Window. This allowsButton
objects to easily access attributes and operations of their window. This imposed structure makes
application programming much easier than if the connection between buttons and windows had had
to be handled explicitly.

Refactoring nested classes

Local classes are useful in particular when the local class is meaningful only inside the context of
its enclosing class. However, if parts of it are meaningful also outside this context, it may be advan-
tageous to refactor the framework to define those parts outside the enclosing class. This structure is
shown in figure 3. The parts &utton which are not dependent Miindow are factored out into

a new top-level class which may be reused in other contextsWiadow. This refactoring thus
achieves both the reusability of non-nested classes and the tight coupling of nested classes.

Button: class {
void onMouseUp() virtual ;
void drawAt(c: Canvas) { ... };

%

Window: class {
wCanvas: Canvas;
void setTitle(t: text) { ... };
WindowButton:  class Button {

void draw() { drawAt(wCanvas) };

%

b

Figure 3. Refactored Window framework

Simulating nested classes

In a language without nested classes, the nesting can be simulated by declaring the local class at the
same level as the outer class, and giving the local class an explitiéxt reference to an object
of the outer class, as shown in Figure 4. For a framework, this has several drawbacks, however.
Firstly, thecontext reference needs to be explicitly administered by the application. Secondly,
thecontext reference will be qualified by the outer class in the framework. This has the effect
that extensions of the local class cannot safely access attributes and operations in extensions of the
outer class, but have to resort to casting.

The use of general block structure thus allows the framework to capture more of the architecture
of the system, and allows safer and easier application programming.

Nested method hooks
General block structure also allows methods to be nested within methods. For frameworks, this

2.TheplusButton  andminusButton are defined asingular objectsa concept discussed in Section
5.



Nested classes Simulated implementation
OuterClass: class { OuterClass: class {
v: Type; v: Type,;
InnerClass: class { h
void m(...){
e Vo InnerClass: class {
h context: OuterClass;
h void m(...){
h ... context.v ...
h
h

Figure 4. Nested classes vs. simulated implementation

allows a hook method to contain a finer structure of local hook methods. We will discuss this in
more detail in Section 3 since the full advantages of this builds on the notion of method inheritance.

2.2 The Framework as a Class

General block structure allows the framework itself to be described as a class. In most object-ori-
ented languages, a framework is a collection of classes which form some kind of package or library.
However, general block structure allows the framework itself to be described as a class. The frame-
work class can then contain local classes and methods, some of which may be hooks.

Framework specialization hierarchy

Modelling the framework as a class is useful because it allows a specialization hierarchy of frame-
works to be defined with the general framework at the root of the hierarchy and the very application
specific frameworks at the leaves of the hierarchy. An example of this is Simula’s standard class
Simulation  which is a general framework for discrete-event simulation. It contains a local class
Process for modelling processes in a simulation and maintains a queue of such processes, as
sketched in Figure 5.

More specialized simulation frameworks can be built by subclassingithelation  frame-
work and introducing more specialized local classes. Figure 6 shows an example of such framework
specialization, taken from the Simula documentation from 1970 [@aiil1970].

Multiple framework instantiation

Modelling the framework as a class allows data global to the framework to be modelled as ordinary
instance variables. For example, in cl&mulation , the process queue referen@&QQg is an

instance variable. Languages without general block structure usually have special language con-
structs for global variables, for example “static” variables in C++ and Java. However, in contrast to
such framework packages, a framework class can be instantiated more than once. Each instance of
the framework will then obtain its own set of data local to the framework, but freely accessible (as
global data) to the local classes in the framework. Such multiple framework instantiation is often
useful. For example, in an instance of a simulation framework it is possible for an individual pro-
cess to have its own instance of the framework in order to perform a local simulation. This tech-



Simulation: class {
SQS: list of Process;

Process: class {
h
Process current() { ... };

void hold(T: double) { ... };
void activate(... X: Process ...){... };
void passivate(...) {... };

Figure 5. The framework as a class - Simula’s ciissilation

JobShop: class Simulation {
Crane: class Process{

%
Machine: class Process {

3
Figure 6. A specialized simulation framework for job-shop analysis.

nique is used for example by Islo [Islo 1994].

3 GENERAL INHERITANCE

Inheritance is often described as an “incremental modification mechanism” [Wegner and Zdonik
1988], allowing individual instance variables and operations to be added in subclasses. However,
the possibility to add or override operations gives fairly coarse-grained incremental modification.
Fine-grained incremental modification can be achieved by supporting inheritance also for methods,
i.e. a method can have submethods in analogy to a class having subclasses. BETA supports inherit-
ance for methods in the following way: The supermethod may contain a statémentvhich

causes the code of the submethod to be executed. Submethods may declare additional input and
output parameters (return values). Tineer construct originates from Simula, and submethods
combined with thénner mechanism was originally proposed in [Vaucher 1975].

If inheritance is supported for all kinds of block constructs in a language, we say that the lan-
guage hageneral inheritanceThe fine-grained incremental modification which can be obtained in
languages with general inheritance is important in framework design because it gives the frame-
work designer the possibility to capture more of the common architecture in the framework.



By using method inheritance, a hook in the form ofimmer statement can be added directly into
a control structure in the framework, allowing the application programmer to extend the behavior
directly in the context of the hook.

3.1 Method Inheritance

As an example of when method inheritance is beneficial, consider the construction of a framework
for concurrent programming, including a class feonitors[Hoare 1974] which provides mutually

exclusive access to its encapsulated data by meamstiof methods Each entry method must first
lock the monitor (possibly involving waiting for the lock to become available), then access data,
and finally unlock the monitor. This common behavior for entry methods can be captured in the
framework by an abstract methedtry as shown in Figure 7. Semaphore object is declared

in the Monitor class and is used by thentry method to lock and unlock the monitor
(mutex.P , mutex.V ). In applications of the framework, application-specific monitors can be
defined by subclassingonitor and providing suitable access methods as submethasgny .

The access methods will extend the behavioewtry at the point ofINNER, thereby ensuring

that the access to the monitor data is done while the monitor is locked.

Monitor: class {
mutex: instance Semaphore;
void entry() { mutex.P(); INNER entry; mutex.V() }

Figure 7. A framework for concurrent programming.

Figure 8 shows an example application definifgeOqueue using theMonitor class in the
framework. The=IFOqueue contains a list of elements, i.e. the encapsulated data. Two access
methodsput andget , are defined as submethodsamitry . These methods exteruhtry both
by providing additional parametergut provides an input parameter agdt a return value), and
by extending the code of the method (by actual accesses to the encapsulated list).

FIFOqueue: class Monitor {
L: list of Element;
void put(e: element) entry { L.insertLast(e) };
Element get() entry { return  L.removeFirst() };

Figure 8. Application using thonitor class in the framework to define a FIFOqueue.

In executing a method, e.gut , which is a submethod of some other method, erdry , the
execution starts in the most general method (i.@ntry in this case) and methods are combined
top-down in the method inheritance hierarchy. At the place of an INNER, the code of the immediate
submethod is executed. Figure 9 shows the full behavior optitemethod when super- and sub-
methods are combined.

This example shows that subclassing and submethoding allows the framework to factor out all
that is specific to monitors as such: the monitor encapsulation, the locking and its implementation

3.This example is in part directly taken from the original paper by Vaucher [Vaucher 1975], and in part
directly from [Madseret al. 1993]



// transfer input parameters (e in this case)
mutex.P()

L.insertLast(e)

mutex.V()

/ftransfer return values (none in this case)

Figure 9. Full behavior giut after method combination.

using a semaphore. The application defines an application-specific monitor, with data to encapsu-
late and access methods to that data, much as if a built-in language construct for monitors were
available.

3.2 Implementation of rendez-vous communication with method inheritance

The framework for concurrent programming can be extended by adding facilities for synchronous
communication similar taendez-vousn Ada [US Department of Defense 1980]. We do this by
adding aPort concept as shown in Figure 10.

Port: class {
mutex, sync: Semaphore;
void entry() { mutex.P(); INNER entry; sync.V() };
void accept() { mutex.V(); sync.P() }

}

Figure 10. Port framework for concurrent programming.

By combining block structure and method inheritance, this framework offers elegant support for
rendez-vous communication. Figure 11 illustrates an application of the framework, using the ren-
dez-vous facilities for synchronizing web browsers with a shared network sB8resvserl and
browser2 both utilize the shared servéineHTTPServer . All three objects run in separate
threads. Assume that both browsers at the same time wish to download a web document. They will
then at the same time execute essentiddgHTTPServer.getURL(url) . Since thggetURL
operation inHTTPServer is a submethod oéntry , the very first thing that happens in both
browsers in this case will be the executionnefitex.P()  on themutex semaphore instance in
theHTTPServer . Their execution will therefore be postponed uthi#HTTPServer accepts a
call of one of theentry operations in the poHTTPport by executingHTTPport.accept()

As soon as this has been executed, one of the two browsers will be allowed to continue its execu-
tion, whereas the second browser is still awaitingrtheex semaphore, anitheHTTPServer is
awaiting thesync semaphore (see the code of #ecept operation inPort ). Just before the

first browser has finished treerver.getURL  operation, it will release theync semaphore,

which in turn will release theheHTTPServer , making it possible fotheHTTPServer to con-

tinue executionTheHTTPServer will then execute anothadd TTPport.accept() , thereby
allowing the second browser to download a web document.

This synchronization behavior is totally encapsulated, and controlled by the port framework,
made possible by the two language constructs generalized block structure and generalized inherit-
ance (especially inheritance for methods).

More extensive examples of defining and using concurrency constructs are given in [Madsen
al. 1993], including definition of monitors with conditions and more advanced ports. These exam-



HTTPserver: class {
CommPort: class Port{
HTMLdocument getURL (url: text) entry {
// get the document from WWW
h

void putURL(url: text; doc: HTMLdocument) entry {
// download ‘doc’ at location ‘url’
h

k

HTTPport: instance CommPort;

while (true) {
HTTPport.accept()
}
}
Browser: class {
server: HTTPserver;
void connectToServer(WEBserver: HTTPserver) {
server = WEBserver; ...

}

... when the user clicks a link ...
server.getURL(linkURLaddress);

3
theHTTPServer: instance  HTTPserver;
browserl, browser2: instance  Browser;

.b"rowserl.connectToServer(theHTTPServer);
browser2.connectToServer(theHTTPServer);

Figure 11. Application of Port framework: a HTTP communication example.

ples all show that by the use of subclassing and submethoding, mechanisms can be built in a frame-
work where other languages require built-in language constructs to give the same degree of support
for the application programmer.

3.3 Further illustration of method inheritance

We can further illustrate method inheritance by extracting the common behavior of the different
buttons in theCalcWindow class of Figure 2 and use method inheritance to reuse this generalized
behavior in allCalcWindow buttons as illustrated in Figure 12. This shows how the use of method
inheritance to factor out common behavior in methods, in analogy to how class inheritance is often
used to factor out common behavior in classes. Other examples of the use of submethoding include
the definition of control structures such as iterators for generic data structures. We will return to this
issue in section 4.



CalcWindow: class Window

theCalculator: instance  Calculator;
UpdatingButton: class Button
{ void onMouseUp() extended
{ inner onMouseUp; setTitle(theCalculator.result) };

%
plusButton: instance  UpdatingButton

{ void onMouseUp() extended {theCalculator.plus()} };
minusButton: instance  UpdatingButton

{ void onMouseUp() extended {theCalculator.minus()}};

Figure 12. CalcWindow example.

3.4 Top-down combination of virtual methods

The two previous examples have shown howitlreer mechanism is used to combine methods in
submethoding. In BETA, theaner mechanism is used also to combine implementations of virtual
methods. Thénner mechanism combines virtual method implementations top-down, starting exe-
cution in the method implementation in the most general class. This is oppositesigpttienecha-
nism in Smalltalk [Goldberg and Robson 1983] and Java which combines virtual method
implementations bottom-up. The top-down combination means that virtual methods are never over-
ridden - they can only be extended. For frameworks, such top-down combination is appropriate
since it gives the framework control over how methods are extended which is essential in order to
ensure that invariants in the framework are not broken by the application programmer. In contrast,
bottom-up combination and free method overriding is suitableifannedeuse where an appli-
cation programmer reuses an implementation in order to recast it to some other purpose than origi-
nally intended. (To support frameworks better, many languages with bottom-up method
combination have other facilities to give the framework more control. For example, in C++ it is pos-
sible to declare non-virtual methods, and in Java it is possible to declare methotd, aseaning
that they cannot be overridden in subclasses.)

We will now discuss three different examples of top-down method combination in relation to
frameworks.

Virtual method extension

When an application programmer defines a subclass to a framework class, it is common that the
methods of the class should be extended as well. For example, consider a GUI framework support-
ing theDecoratordesign pattern which allows the functionality of an object to be extended dynam-
ically [Gammaet al. 1994]. In the GUI framework a window can be decorated with, for example,
scrollbars and borders. A decorator keeps track of its component to which it forwards all messages.
In addition, the decorator may perform some extra behavior. For example, when a decorator
receives the messadeaw it will first draw its component and then draw itself. Figure 13 shows an
example of the framework code fdraw in Decorator , capturing the common behavior of for-
warding the message to the component.INNER is placed last idraw to allow subclasses of

10



Decorator to perform their extra behavior.

Component: class {
draw() virtual { INNERdraw };

Decorator: class Component {
myComponent: instance Component;
draw() extended {myComponent.draw; INNER draw };

k

Figure 13. GUI framework with support for the Decorator pattern

The GUI framework may provide some standard decorators, like scrollbars and borders, but it is
also possible to define specialized decorators in the application. For example, if the application pro-
grammer is not satisfied with the standard scrollbars, a new specialized decorator for narrow scroll-
bars can be defined as shown in Figure 14. The extension of the virtual methad simply
implements the drawing of the scrollbar. The application programmer does not have to worry about
forwarding the message to the component, this is already taken care of in the framework. This solu-
tion for the decorator pattern differs from the standard implementation using bottom-up method
combination where the application would typically need to remember tsugadf .

NarrowScrollbarDecorator: class Decorator{
draw() extended ({
// draw the scrollbar
%

¥
Figure 14. Application of GUI framework defining specialized decorator.

The need for virtual method extension is particularly apparent for operations which in some way
deal with thecompleteset of data in an object, e.g. initialization methods, clone methods, print
methods, etc. Here top-down combination makes sure that the framework can perform all its actions
without the risk of these actions being overridden by application code. Another use of virtual
method extension is in instrumentation of framework code, e.g. in order to animate computations
taking place in the framework.

Pre-conditions

Checking of preconditions for methods is common practice in order to make sure that framework
operations are called by the application when in an appropriate state and with appropriate argu-
ments, thereby supporting safe use of the framework. Top-down method combination allows pre-
conditions of virtual methods to be checked at the declaration of the virtual method rather than to
have to be repeated in each implementation of the method. Of course, a special language mecha-
nism for preconditions, like in Eiffel, serves the same purpose.

Default behavior

It is common that virtual methods in a framework define default behavior whictiéadedto be
overridden if desired in the application. In this case, the usual style of overriding virtual methods

11



works fine. If top-down method combination is used, like in BETA, the framework method imple-
menting the default behavior needs to check if the method is extended or not. In BETA this can be
done by means of so called pattern variables (variables holding the class value of an object or anal-
ogously for methods). If the method is not extended, the default behavior will be executed. While
this is not as straight-forward for the framework application as in traditional method overriding, the
application program will be the same in both cases. In addition, the top-down method combination
allows default behavior to be combined with preconditions as discussed above.

3.5 Comparison of top-down method combination with other techniques

We have argued that top-down method combination uisingris more appropriate for frameworks

than the usual bottom-up method combination usinger.The use okuperleads to informal pro-
gramming conventions, such as “when overriding this method, you mustiugadrat the start of the
method”. In contrast, top-down combination usinger gives the framework precise control over

how methods may be extended and/or overridden, thus supporting planned reuse and supporting
that framework invariants are not broken by the application.

Theinner construct is somewhat similar to tieall-next-methodonstruct foraroundmethods in
CLOS [Keene 1988]. However, CLOS combines actions bottom-up, so it is always possible for an
application programmer to override bot#tround methods and the ordinargrimary methods
defined in the framework, thus possibly destroying the semantics of the framework.

Top-down method combination for virtual methods can be simulated by using the design pattern
Template Method which factors out sub-behavior of a template method to virtual hook methods
[Gammaet al. 1994]. This can be used to replad&NER with a call to a virtual procedure. How-
ever, this leads to a proliferation of virtual methods. For example, for a virtual métfiod which
is extended at each level in a hierarchy of clagseB, andC, there would be a need to introduce
three new virtual methods, e.g. calledtinnerA | initinnerB , andinitinnerC . While
this is possible, it is cumbersome, errorprone, and leads to a more complex framework specializa-
tion interface.

Note, however, thaihner can be simulated by the Template Method pattern only in the case of
virtual methods. Sub-methoding, as discussed in section 3.1, cannot be simulated by the Template
Method. E.g., ifINNER in theentry method were replaced by a virtual metheatrylnner-

Monitor , this would not help becaugmut andget are not virtual implementations, bstib-
methodsof entry . The best we could do with the Template Method would be to define two
template methodput andget in classMonitor , and let them call virtual methogsutinner

and getinner . These virtual methods would then be implemented by the application in sub-
classes toMonitor . However, this would restrict the monitor functionality to monitors with
exactly two entry methods, and would furthermore make it necessary to decide on the number and
types of parameters for these methods already in the framework. In contrast, in a framework based
on submethoding, applications can define monitors with any number of entry methods and with
parameters decided by the application.

4 GENERAL VIRTUALITY

Virtual methods is a well understood concept in object-oriented programming: a class defining a
virtual method gives incomplete information about the implementation of that method. The com-
plete information is in general not known until run-time. By taking a more general view on virtual-
ity we can define it as a mechanism for supplying incomplete information about an entity at a given
level of abstraction. With this view, we can see that virtuality in mainstream object-oriented lan-
guages is limited teirtual methodsBy general virtualitywe mean that virtuality can be applied to

12



all kinds of block constructs in the language.

4.1 Virtual Classes

In BETA, the unification of methods and classes has lead to the notieintoél classegMadsen
and Mgller-Pedersen 1989] in analogy to virtual methods. A class defining a local virtual class
declares that the local virtual class must be a subclass of some specific class. However, the exact
subclass may not be known until run-time. Virtual classes correspond to a kind of type parameters
(bounded polymorphism) and the mechanism can be used as an alternative to parameterized classes
in Eiffel, or templates in C++. A recent proposal shows how virtual classes can be added to Java
[Thorup 1997].

Let us illustrate by a simple example of a framework with a bounded polymorphic list data type

as shown in Figure 5 TheList class contains a clag&ementType which is the class of the
elements in the listElementType is virtual, meaning that at this level we don’t know exactly
which classElementType is - we only know that it is at leagdbject (eitherObject or a sub-
class toObject ). ThelList isimplemented using a local clal®de with next andprevious
references.

List: class {
ElementType:  virtual class Object;
Node: class {
element: ElementType;
next, previous: Node
h
first: Node;
<<listLib: attributes>>

Figure 15. Framework with polymorphic list data type.

In an application of the framework, we can describe a list of houses as shown in figure 16. The
virtual classElementType is nowextendedo House, meaning that it is ensured to be at least
House (eitherHouse or a subclass dflouse). This implies that all elements intdouseList
will be at leastHouse objects and when accessing attributes of an element we can safely access for
example thaaxRate attribute as shown in the figure. The methgetElement() here sym-
bolizes any operation ihist which returns an object dlementType . SinceaHouseList is
of type HouselList where ElementType is bound toHouse, the expressioraHouse-
List.getElement() has the typeHouse and the access t@mxRate can be statically type
checked.

4.2 Virtual classes and method inheritance

The combination of virtual classes with method inheritance is very powerful because it allows
abstract methods specified in a framework to be parameterized by types using the virtual class

4. <<listLib: attributes>> is inserted in Figure 15 for future reference. We will below add some
operations to thikist class. To reduce the space, we will not repeat the elnite declaration, but just

give the declaration of the new operations. Just think of these new operations as being inserted textually at
this place in théist class declaration.

13



House: class {
taxRate: float;
void display() { ... };

k

HouselList: class List{
ElementType: extended class  House;
<<HouselListlib: attributes>>

}

// access to element in a HouseList
aHouselList: instance  Houselist;
b“rint (aHouseList.getElement().taxRate);
Figure 16. Application defining specialized list

mechanism. We will illustrate this by extending thist class in the framework with a number of

operations. Figure P7showsscan , an abstract method iterating over all the elements in the list.
Scan callsINNER for each element in the list (see Section 3.1 on method inheritancejusnd
rent is areference denoting the current element in the iteration.

--- listLib: attributes ---
void scan() {
// Iterates over all elements in List
pos, next: Node; current: ElementType

pos = first;
while (pos<> null ){
current = pos.element; next = pos.next;
INNER scan;
pos = next
}
}

Figure 17. Extension of the framewdtlst class

The scan method can be specialized by the application to for example display all houses in a
HouseList as follows:

5.--- listLib: attributes --- in Figure17 specifies, that this nescan operation is to be in-
serted at the<listLib: attributes>> place in theList class declaration in Figure 15.
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--- HouselListLib: attributes ---
void print() scan { current.display() }

Note, that the virtual extension dlementType in HouseList ensures that it is statically
known thatcurrent  is of typeHouse, and therefore, thaturrent.display() is legal. We
can also modify the attributes of the objects throughdineent reference irscan as illustrated
by the followingraiseTax method:

--- HouselListLib: attributes ---
void raiseTax() scan {

current.taxRate = (current.taxRate*1.01)
}

which will raise the tax rate of all houses in theuseList by 1 %.

Submethoding can be used to define more advanced operatidist onin the framework. Fig-
ure 18 shows the definition of an operatgelect which is a submethod afcan , and operations
find andremove which are submethods sélect

Theselect method also shows the use of general block structure for methods. It defines a local
methodpredicate  which is virtual and used to decide which elements to include in the iteration.
Theselect method can be used in the application to display all houses with a tax rate at more
than 10% by defining therintExpensive method:

--- HouselListLib: attributes ---
void printExpensive() select {
void predicate() extended { return current.taxRate>0.1}

current.display()

}

Thefind method (in Figure 18) is a submethodseflect  which returns the first element satisfy-

ing predicate . If no such element is found, the method will returall . (Thereturn  state-

ment sets the return value of a method but does not alter the execution contrdleaMee
statement is a structured goto statement which returns control to the caller. We can now find the first
house in the list with a tax rate at more than 25% b¥inlélighTaxed  method:

--- HouselListLib: attributes ---
void findHighTaxed() find {

void predicate() extended { return current.taxRate>0.25 }
}

Theremove method (in Figure 18) is also defined as a submethablgfict and removes all
elements satisfyingredicate . We can use this operation to remove all houses with a 0% tax
rate by theemoveZeroTaxed method:
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--- listLib: attributes ---
void select() scan {
// iterates over all elements in List which
// satisfies the predicate
boolean predicate() virtual { INNER predicate }

if (predicate) { INNER select }

ElementType find() select {
// returns the first element in List which satisfies
// the predicate
INNER find; return current; leave find;
}

void remove() select {
// removes all elements in List which satisfy the
// predicate
if (pos.next<> null ){
pos.next.previous = pos.previous
} else {
pos.next.previous = null

if (pos.previous<> null ) {
pos.previous.next = pos.next

} else {
pos.previous.next = null

}
if (pos=first) { first = pos.next }
pos.next = null ; pos.previous = null

Figure 18. Operations implemented as submethodsasf in the frameworlList class

--- HouselistLib: attributes ---
void removeZeroTaxed() remove {

void predicate() extended { return current.taxRate=0.0}
}

The above discussion illustrates the elegancy and powerful static constraints that can be encapsu-
lated in a framework when the framework design is supported by strong, static language mecha-
nisms like general block structure, general inheritance, and general virtuality.

4.3 Virtual Classes in Frameworks

Virtual classes are very powerful when combined with general block structure. They allow virtuals
(or incomplete information) to be described at any level in the program. This is very useful in
framework design, because it allows incomplete descriptions to appear at any level in the design.
For example, the framework may itself contain a virtual class. This will then serve as a type param-
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eter to the entire framework, provided as a single point for specialization by the application pro-

grammer. The alternative using ordinary main-stream parameterized classes would be for the
application programmer to consistently parameterize all abstract classes in the framework (or give
special instantiation operations for these abstract classes, e.g. using the factory patterns ¢Gamma

al. 1994]) which make use of this virtual class. This is cumbersome and error-prone for the applica-

tion programmer, leading to possible structural or behavioral problems in the usage of the frame-
work.

We can illustrate this by the framework for business applications shown in Figure 19. This frame-
work defines a set of cooperating classes, each implementing aspects of the business, such as the
financial aspectsiccounting ), the advertising, etcMarketing ), and the order and shipment
handling Operations ). Important for the proper cooperation of these classes within the frame-
work is that they share the same understanding of the concept of a customer. This is in this frame-
work expressed by the framework defining one common definitid@ustomer as a virtual class.
Customer is virtual in theBusinessFramework , since it should be possible to create special-
ized business frameworks in which there is a specialized understanding of the concept of a cus-
tomer.

BusinessFramework: class {
Customer: virtual class Object;
CustomerDatabase: class Database {
ObjectType: extended class  Customer

theDatabase: instance  CustomerDatabase;
Accounting: virtual class {
void invoice(c: Customer) virtual {
INNER invoice ...
}

... functionalities for accounting ...
¥
Marketing: virtual class {

... functionalities for marketing ...
h

Operations: virtual class {
... functionalities for operations ...
¥

Figure 19. Business framework

A specialized business framewodfkbusiness  is shown in Figure 20. Here, t@ustomer
class is extended to include e.g. information about the customer’s favorite operating system. The
local classes foAccounting etc. are extended to make use of that information, e.g. in the
invoice  method.

Figure 21 shows how we can go even further by specializingTfiasiness  framework into
a framework for security software. This specialization is done in a similar way by extending the
definitions ofCustomer , Accounting , etc.

The business framework example above illustrates the power of combining virtual classes with
general block structure: a virtual clagsustomer ) provides a single point of type parameteriza-
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ITbusiness: class BusinessFramework {
Customer: extended class {
void favoriteOS() {

}
5
Accounting: extended class {
void invoice() extended {
... c.favoriteOS; ...
}
%

... Similar extensions for marketing and operations ...

}

Figure 20. Specialized framework for IT business

ITsecurity: class ITbusiness {
Customer: extended class {
securityLevel: integer;

5
Accounting: extended class {
void invoice() extended {
... c.securityLevel; ...
}
h

... Similar extensions for marketing and operations ...

}

Figure 21. Further specialized framework

tion for a complete framework of different classes (likecounting , Marketing , Opera-

tions , and so on). In a system with traditional type parameters such as C++ templates or Eiffel
parameterized classes, one would masttounting , Marketing , and so on as templates each
with aCustomer type parameter. These templates would then have to be individually instantiated
to classes, providing@ustomer subclass as a parameter.

The example further illustrates how virtual classes can be extended in several steps: The virtual
classesCustomer and Accounting  defined in the generaBusinessFramework  are
extended in thdTbusiness  framework (a subclass @usinessFramework ) and again in
ITsecurity (a subclass dfTbusiness ). Such stepwise extension is not possible in traditional
type parameterization.

4.4 Virtual classes and covariance

Virtual classes lead to what is known ag@varianttype system: Consider a cla€swith a local
variablev of the virtual classl, and a subclas® which extendsT. This leads to a situation where
the type ofv will be more special in ® object than in & object. l.e., the types of and its enclos-
ing class vary in the same direction (hence the tecavariance). The usefulness of covariance in
frameworks was illustrated e.g. in Section 4.1 wheigt was specialized télouseList and
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local references to elements were specialized f@ject to House using the virtual clasEle-
mentType . This allows a framework to capture general aspects of a system without fixing the
types of the entities described in the framework.

Many papers have discussed type problems for covariant type systems, e.g. [Cook 1989], but
they have usually taken a type system based on type redefinition as a starting point where argument
types may be redefined and there is no distinction between a virtual class and an ordinary class. In
contrast, the use of virtual classes allows the use of covariance without type problems. Figure 22
shows the difference between covariance in a type system based on redefinition and a type system
based on virtual classes.

Type system based on redefinition Type system based on virtual classes
List: class { List: class {
void insert(e: Object) ElementType:  virtual class Object;
{...} void insert(e: ElementType)
h {..}
}
HouselList: class List{
void insert (e: House) HouselList: class List{
} ElementType:  extended class House;
}

Figure 22. Covariance in different type systems

In the ordinary type system, the argumemntto insert is thought of as having the type
Object , and a call taaList.insert(new Object) would seem correct. But the type sys-
tem will break ifaList happens to be HouseList object which redefines the argument type to
House. In the virtual class type system, the argumeioes not have the typ@bject . Insteadge
has the typd&lementType , and the meaning dElementType is (in general) not known until
runtime since it is a virtual class. Therefore, a calhtdst.insert(new Object) will (in
general) result in a runtime check, checking the type afjainst the value dElementType for
alList . However, in many cases, runtime checks are unnecessary because the EZdueait-
Type can be determined at compile time. In the following examplépuseList is a constant
reference and its value @&lementType is House, which can be determined at compile time.
Thus, no runtime check is needednsert(new House)

aHouselList: instance  HouselList;
aHouselList.insert( new House); // statically typesafe

Another possibility of allowing the value dElementType to be statically determined is to use
final extensionsf virtual classes. A final extension of a virtual class is an extension which prohibits
further extension in subclasses.BfementType in HouselList was defined as a final exten-
sion, this would disallow subclassesHouseList , e.g.SummerHouselList , to further extend
ElementType . A SummerHouseList will have to accept anylouse in its list. This would
allow calls toinsert  to be statically type checked also for dynamic references qualified by
HouseList . Figure 23 shows an example of this. At the callitsert , the runtime type of
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aHouseList is not known: it could béHouseList or any subclass tblouselList . But since
ElementType is defined as a final extension ffouseList , we know its value foaHouse-

List at compile-time, namelyouse, and there is no need for a runtime check at the call to
insert

HouselList: class List{
ElementType: final class House; // Final extension
}

aHouselList: HouselList;
// aHouselist is assigned to an object
aHouselList.insert( new House);  // Statically typesafe

Figure 23. Statically checkable covariance using final extensions

The covariant properties of general virtuality thus gives an elegant separation of the statically
available information, defined in the abstraction, and the dynamically available information, defined
in the specializations, in contrast to type systems based on redefinition which mixes these issues.
Covariance and virtual classes are treated in more detail in [Mataéi990].

5 SINGULAR OBJECTS

In traditional object-oriented languages, objects are always instances of previously defined classes.
In framework design, and especially framework usages, this imposes an extra burden on the appli-
cation programmer, since in order to create an object which is not just a plain instance of a frame-
work class, the programmer needs to define a subclass of this framework class, and then instantiate
the object from this new class.

An elegant solution to this problem is to allow class specialization and object instantiation to be
done in the same declaration as shown in Figure 24. An objdefined in this way is called sin-
gular object The class o is an anonymous subclass of the cl&assed in the declaration. To the
right in the figure, a traditional implementation is shown where the class ltds to be named
(sClass ) and declared explicitly. The use of singular objects thus leads to substantially simpler
application code.

Singular object Traditional implementation
s. instance C{ sClass: class C{
void v(..){..} void v(..){..}
}
s: instance sClass;

Figure 24. Singular objects vs. traditional implementation

Singular objects were originally introduced in BETA and are now also available in Java (called
anonymous classpdNe have already seen the use of singular object in section 2.1 \phesre
Button andminusButton in the calculator were defined as singular objects. Without singular
objects, the application programmer would have had to first define two clRéseRButton-
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Class and MinusButtonClass containing the respective implementationsoofMouseUp,

and then defining the two objeqgitusButton  andminusButton as instances of these classes.
Note that singular objects should not be confused witlgletonsi.e. classes of which there is

only one global instance [Gamneaal. 1994]. Singular objects are not necessarily globally defined,

and if their definition is nested in some other block, there may be several instances of the singular

object - one for each instance of the enclosing block. For exarppleButton  and minus-

Button are singular objects, but if we create sevé&alculatorWindow  objects, there will be

oneplusButton  and onaninusButton  for each of the windows.

5.1 Singular objects as adapters

There is often a need edaptframework classes to work together with classes defined in an appli-
cation. As an example, consider an MVC-like framework (Model-View-Controller [Krasher and
Pope 1988]) with general View classes for displaying information in window panes. To build an
interactive tool in an application, different View classes are adapted to work together with applica-
tion specific model classes. One example of a View clak&si¥iew implementing a pane con-
taining a scrollable list with a current selection. The specialization interfalcistidiew  contains

three hook methods as shown in Figure 25. To usis®&/iew in an application, we need to adapt

it to fill in these hooks. Singular objects provide a very elegant solution to this adaptation.

ListView: class {

List getList() virtual
// Should answer list of alternatives to display

integer getCurrentSelection() virtual
// Should answer current selection to display

void changeModelSelection(index: integer) virtual
// Should change the current selection.
// Called when the user performs a new selection.

Figure 25. MVC framework: Specialization interface for ListView.

As an example, consider an application implementing a music tool. One of the panes in the tool
should be a scrollable list displaying a number of different music styles: “reggae”, “jazz”, “classi-
cal”, and so on. An application clagdusicModel contains the data to be displayed in the list
pane. The tool can be constructed by attaching instances of the frameworkistd¥sw to a
MusicModel instance. Figure 26 shows how this is done using singular objects.

The objectLV in Figure 26 is aradapter it adapts the behavior of a framework claksst-

View ) to work with a class in the applicatioM{sicModel ). This way to implement adapters is
an alternative to the more traditional implementation techniques discussed in [GatramE994].
The implementation relies on block nesting: the obje¢is nested inside the objestusicTool
SincelV is a (specialized) instance bistView , it has direct access to the informatiorbioth of
two classes which need to be connectedLigiView by subclassing and tblusicModel by
block nesting. This makes it straight-forward to define the adaptation: virtual methadkst-n
View can directly be implemented to call appropriate method4uisicModel .

This use of singular objects as adapters is omnipresent in applications using the BETA frame-
works. The key motivation for the introduction of class nesting and singular objects in Java (called
“inner classes” and “anonymous classes” in Java) was to support this implementation of adapters.
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MusicModel:  class Subject {
selection: integer;

musicList: List = (“reggae”, “jazz”, “classic”);
List getMusicList() { return musicList};
integer getMusicSelection() { return  selection};

void setMusicSelection(index: integer) {
selection := index;

h

// Code creating music tool:
musicTool:  instance  MusicModel {
LV: instance ListView {
List getList() { return getMusicList(); };
integer getCurrentSelection() {
return  getMusicSelection();
h
void changeModelSelection(index: integer) {
setMusicSelection(index);

b

Figure 26. Application of MVC framework: a music tool.

5.2 Singular objects vs. pluggable objects

Singular objects is an alternative to so-call@dggable objectsas introduced in the Smalltalk
Model-View-Controller framework [Krasner and Pope 1988]. A pluggable class is a framework
class which can be adapted by the application by providing parameters rather than by subclassing.
The goal is to avoid having to write trivial subclasses in the application. Typically, many of the
parameters to a pluggable class are method names, and the framework class will call these methods
by using the Smalltalperformmechanism. In the MVC framework there are for example plugga-
ble View and Controller classes which can be instantiated and attached to an application
model without the need for subclassing these framework classes. Figure 27 shows the Smalltalk
instantiation interface of a pluggable version of th&tView discussed in Section 5.1. The figure
also shows the use of therformmechanism in the implementationRifiggableListView

A problem with Smalltalk’s pluggable objects is that it is a fairly complex technique for the
application programmer to understand, relying on many informal programming conventions. For
example, the framework assumes a certain signature for each of the methods whose names are
passed in the creation message, but these signatures are not a formal part of the framework inter-
face. Figure 28 shows a Smalltalk application program for constructing the music tool discussed in
Section 5.1, but now using the pluggabistView class.

By comparing the solution using singular objects in Figure 26 with the solution using pluggable
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PluggableListView
// class methods for creation

on: anObject list: getListSel selected: getSelectedSel
changeSelected: setSelectionSel

// instance methods ...
... anObject perform: setSelectionSel with: index

Figure 27. Smalltalk instantiation interface to pluggable ListView.

MusicModel // (the same as in figure 26)

// Code creating music tool:
| aMusicModel, aLV |
aMusicModel <- MusicModel new.
aLV <- PluggableListView
on: aMusicModel
list: getMusicList#
selected: getMusicSelection#
changeSelected: setMusicSelection#.

Figure 28. Smalltalk implementation of music tool using pluggable objects

objects in Figure 28, we see that the size of the application code is practically the same. The main
technical difference is in static checkability. In the Smalltalk solution, the frameworkpesésm

to invoke methods in the application model. This call can go wrong if the application programmer
provides the wrong arguments in the instantiation ofRhgggableListView . For example, it

is not statically checkable thahObject actually has a method with the name givendeySe-
lectionSel . Even if there is such a method, it is not statically checkable if it has the right num-
ber of arguments. In contrast, in the solution using singular objects, all this information is statically
checkable. Singular objects provides an alternative solution to pluggable objects which also avoids
explicit trivial subclasses, but which provides a safer interface, not relying on passing method
names as arguments, and where the signatures of all methods are part of the framework interface.

Whitebox vs Blackbox Frameworks

In the Smalltalk community, frameworks are often characterized as being nidé@abox(mean-

ing that classes are instantiated rather than specialized) or nveliriigbox(meaning that classes

are intended to be specialized) [Johnson and Foote 1988]. The introduction of pluggable objects is
seen as a way of making a framework more blackbox [Roberts and Johnson 1998]. However, these
definitions of blackbox/whitebox frameworks may be suitable for Smalltalk where there are very
weak possibilities for controlling specialization. For languages where static checkability is of prime
importance, we find it desirable that frameworks can provide blackbox interfaces also for special-
ization. l.e., that parts of a framework class can be encapsulated and not be used or affected by the
subclasses in the application. Many languages have information hiding construgisvade, hid-
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den,etc. that support this. Another very important aspect is the possibility for the framework to con-
trol where overriding may take place. This can be done by mechanisms such as non-virtual methods
as in Simula, BETA, and C++, by thianer mechanism in BETA, or by using tHeal construct
available in Java.

As shown in Section 5.1, the specialization interface is clear and singular objects makes it easy to
use. In contrast, the use of pluggable objects to turn a specialization interface into an instantiation
interface may lead to an interface which is both unsafe and difficult to understand.

5.3 Singular method specialization

By building on method inheritance as discussed in Section 3, the idea of singular objects can be

applied also for methods. Whereas singular instances of classes are normally declared as attributes

of another object or class, a singular instance of a method can be used to specialize a method call.
In Section 4.2, we defined a clastouselList , and a series of special purpose methods:

print , raiseTax , printExpensive , findHighTaxed , andremoveZeroTaxed . If we

assume, that these methods were to be used only once, we could avoid having to define these auxil-

iary methods, and invoke the methods as singular specializations of the original list operations. And

further, if we assume that we only needed one house list, we could avoid the auAitiasgList

class definition. We could then defiaouseList as:

aHouselList: instance  List {
ElementType: final class House; // Final extension

and with this definition, we could instead of defining the auxiliary methods, just invoke the singular
method specialization shown in Figure 29:.

This shows how the combined use of method specialization and singular objects can be used to in
effect define new control abstractions in the framework which can be used in the application. And it
should be noted, that the singular objattouseList and the singular method specializations are
equally statically type-checkable as tHeuseList class and the auxiliary methods defined in
Section 4.2.

6 CONCLUSION

Advanced and mission-critical frameworks impose modeling and safety requirements on the pro-
gramming languages to be used. In particular, there is a growing need for providing flexibility in a
statically checkable, type-safe manner. The traditional object-oriented language constructs of
classes, inheritance, and virtual methods, provides the basic mechanisms for constructing frame-
works. In this paper, we have shown how generalizing these language constructs can provide the
framework designer with greater possibilities to encapsulate the stable parts of a design in a type
safe way, giving the framework designer fine-grained possibilities to control how the framework
can be varied, and providing a very high degree of flexibility in applying the framework. The gener-
alized language constructs discussed in this paper are not new, they have beed realized and tested in
real languages for many years, most notably in the BETA language. What we have done in this
paper is to illustrate precisely how these generalized constructs give support in framework design
and application. We hope to have illustrated how these generalized constructs give support for
planned reusavhere it is the framework which controls how it can be extended and where frame-
work invariants can be encapsulated so they cannot be compromised by the application. This is
somewhat in contrast to mainstream object-orientation where the focus is on how an application can
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// print
aHouselist.scan { current.display() }

// raiseTax
aHouselList.scan { current.taxRate = (current.taxRate*0.01) }

// printExpensive
aHouselList.select {
void predicate() extended { return current.taxRate>0.1}

current.display()

}

// findHighTaxed
theHouse =
aHouselList.find {
void predicate() extended { return current.taxRate>0.25
}

/I removeZeroTaxed
aHouselList.remove {
void predicate() extended { return current.taxRate=0.0}

}

Figure 29. Singular method specialization.

freely override and replace parts of the framework.

The introduction of new languages, or the adoption of new language constructs into existing lan-
guages, is a difficult process which takes very long time. Recall that classes and inheritance were
introduced by Simula in 1967 and it took 15-20 years before these constructs came into widespread
use through Smalltalk and C++. All of the generalized language constructs presented in this paper
have been in use for many years in BETA, and we are happy to see that several of these language
constructs are beginning to make their way into popular programming languages, such af Java.
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